[1] Ibbott C, Chiocchio S, D’Agata E, et al. Overview of the engineering design of the ITER divertor[J]. Fusion Engineering and Design, 2001, 56–57: 243–248.
[2] Chang S H, Baek W. Understanding, predicting and enhancing critical heat flux[C]. Proceedings of the 10th international topical meeting on nuclear reactor thermal hydraulics (NURETH-10), Seoul, Korea, October 5–9,2003.
[3] Schlosser J, Escourbiac F, Merola M, et al. Thermal hydraulic testing for ITER high heat flux components[C].Fusion Technology 1998, Proc. of the 20th SOFT,Marseille, 1998. 137−140.
[4] Tivey R, Akiba M, Driemeyer D, et al. ITER R&D:vacuum vessel and in-vessel components: divertor cassette[J]. Fusion Engineering and Design, 2001, 55:219–229.
[5] Falter H D, Thompson E. Performance of hypervapotron beam stopping elements in JET[J]. Fusion Technology, 1996, 29: 584–595.
[6] Milnes J, Ciric D, Forner M, et al. Hypervapotron design for the long pulse upgrade on MAST NBI[C].Proceedings of the 20th IEEE/NPSS Symposium on Fusion Engineering, San Diego, USA, October 14–17,2003. 478–481.
[7] Escourbiac F, Bobin-Vastra I, Kuznetsov V, et al. A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology [J]. Fusion Engineering and Design, 2005, 75–79: 387–390.
[8] Escourbiac F, Schlosser J, Merola M, et al. Experimental optimisation of a hypervapotron concept for ITER plasma facing components[J]. Fusion Engineering and Design, 2003, 66–68: 301–304.
[9] Falter H D, Deschamps G H, Hemsworth R S, et al. Test of divertor elements, JET divisional note[R].JET-DN-C(91)93.
[10] Massmann P, Falter H D, Deschamps G H. Test of a narrow channel vapotron (4mm fins, 3mm water channel),JET divisional note[R]. JET-DN-C(91)96.
[11] Milnes J, Drikakis D. Qualitative assessment of RANS models for hypervapotron flow and heat transfer[J].Fusion Engineering and Design, 2009, 84: 1305–1312.
[12] Domalapally P, Dellabiancia M. Thermal-hydraulic design of water cooled first wall of the fusion reactor under DEMO conditions[J]. Fusion Engineering and Design, 2017, 124: 311–315.
[13] 才来中, 蔡立君, 刘翔, 等. 钨偏滤器的单元结构设计以及相关实验研究[J]. 核聚变与等离子体物理, 2016,36(2): 97−103.
[14] Ezato K, Suzuki S, Sato K, et al. Critical heat flux test on saw-toothed fin duct under one-sided heating conditions[J]. Fusion Engineering and Design, 2001, 56–57:291–295.
[15] Wang Z W, Song Y T, Huang S H. Design of the hypervapotron module for the EAST device[J]. Fusion Engineering and Design, 2012, 87: 868–871.
[16] 储德林, 潘保国, 梅洛勤, 等. 聚变堆高热流部件超汽化换热实验研究[J]. 核聚变与等离子体物理, 2015,35(3): 253−258.
[17] Wilcox D C. Turbulence modeling for CFD[M].California: DCW Industries Inc, 1993.
[18] Kurul N, Podowski M Z. On the modeling of multidimensional effects in boiling channels[C]. ANS Proc. 27th National Heat Transfer Conference,Minneapolis, MN, July 28−31, 1991.
[19] Ranz W E, Marshall W R, Evaporation from drops[J].Chemical Engineering Progress, 1952, 48(3): 141−146.
[20] ANSYS CFX. User manual, ANSYS[M]. Inc,Canonsburg, PA, 2012.
[21] Milnes J. Computational modelling of the hypervapotron cooling technique for nuclear fusion applications[D]. England: Cranfield University, 2010.
[22] Lemmert M, Chawla J M. Influence of flow velocity on surface boiling heattransfer coefficient [C]. Heat Transfer and Boiling, Academic Press, 1977.
[23] Tolubinski V I, Kostanchuk D M. Vapour bubbles growth rate and heat transferintensity at subcooled water boiling[C]. Proceedings for the 4th International Heat Transfer Conference, Paris, France, 1970.
[24] Cole R, Rohsenow W M. Correlation of bubble departure diameter for boiling of saturated liquid [J]. Chemical Engineering Progress Symposium Series, 1969, 65(92):211–213.
[25] Kurul N, Podowski M Z. On the modeling of multidimensional effects in boiling channels[C]. ANS Proc. 27th National Heat Transfer Conference,Minneapolis, MN, July 28−31, 1991.
[26] Anglart H, Nylund O. CFD application to prediction of void distribution in two phase bubbly flows in rod bundles[J]. Nuclear Engineering and Design, 1996, 163:81–98. |