[1] Zhuang G, Li G, Li J, et al. Progress of the
CFETR design [J]. Nucl. Fusion, 2019, 59(11): 112010.
[2] Ryutov D D, Cohen R H, Rognlien T D, et al. A
snowflake divertor: a possible solution to the power
exhaust problem for tokamaks [J]. Plasma Phys. Contr. Fusion, 2012, 54(12): 3145-3171.
[3] Kotschenreuther M, Valanju P, Covele B, et al.
Magnetic geometry and physics of advanced divertors: the X-divertor and the
snowflake [J]. Phys. Plasmas, 2013, 20(10): 102507.
[4] Li H, Li G, Luo Z P, et al. Formation of
snowflake diverted equilibria of CFETR [J]. Fusion Engineering and Design, 2017,
121: 117-123.
[5] Wan Y, Li J, Liu Y, et al. Overview of the
present progress and activities on the CFETR [J]. Nucl. Fusion, 2017, 57(10):
102009.
[6] Crotinger
J A, Lodestro L, Pearlstein L
D, et al. CORSICA: a
comprehensive simulation of toroidal magnetic-fusion devices, final report to
the LDRD program [R]. DOE, U.S.: Office of Scientific & Technical
Information Technical Reports, 1997.
[7] Chen J L. Steady-state and long pulse scenarios
[R]. Hefei: 3rd CFETR Physics IAC, 2019.
[8] Stangeby P C. The plasma boundary of magnetic fusion
devices [J]. Plasma Phys. Contr. Fusion, 2000, 43(2): 223.
[9] Kurkisuonio T, Kiviniemi T, Sipila S, et al.
Monte Carlo simulations of the heat load asymmetries on JET divertor plates [J].
Nucl. Fusion, 2002, 42(6): 725-732.
[10] Jardin S C, Pomphrey N, Delucia J, et al.
Dynamic modeling of transport and positional control of tokamaks [J]. Journal
of Computational Physics, 1986, 66(2): 481-507.
[11] Kessel C E, Campbell D J, Gribov Y, et al.
Development of ITER 15MA ELMy H-mode inductive scenario [J]. Nucl. Fusion,
2009, 49(8): 085034.
[12] Nian F, Yang Z, Ding R, et
al. Modelling of heat flux deposition on the CFETR first wall with neon
impurity seeding [J]. Plasma Phys. Contr. Fusion, 2021, 63(9): 095004.
|