[1] Wan Y, Li J, Liu Y, et al. Overview of the present progress and activities on the CFETR [J]. Nucl. Fusion,2017, 57(10): 102009.
[2] de Esch H P L, Kashiwagi M, Taniguchi M, et al. Physics design of the HNB accelerator for ITER [J]. Nucl. Fusion, 2015, 55(9): 096001.
[3] Singh M J, Boilson D, Hemsworth R S, et al. Heating neutral beams for ITER: Present Status [J]. IEEE T Plasma Sci., 2016, 44(9): 1496−1505.
[4] Sonato P, Agostinetti P, Bolzonella T, et al., Conceptual design of the DEMO neutral beam injectors: main developments and R&D achievements [J]. Nucl. Fusion, 2017, 57(5): 056026.
[5] Sonato P, Agostinetti P, Fantz U, et al. Conceptual design of the beam source for the DEMO neutral beam injectors[J]. New J. Phys., 2016, 18(12): 125002.
[6] Hanada M, Kojima A, Tobari H, et al. Development of the negative ion beams relevant to ITER and JT-60SA at Japan atomic energy agency [J]. Rev. Sci. Instrum., 2016, 87(2): 02B322.
[7] Agostinetti P, Aprile D, Antoni V, et al. Detailed design optimization of the MITICA negative ion accelerator in view of the ITER NBI [J]. Nucl. Fusion, 2016, 56(1):016015.
[8] Marcuzzi D, Agostinetti P, Dalla Palma M, et al. Design of the RF ion source for the ITER NBI [J]. Fusion Eng.Des., 2007, 82(5−14): 798−805.
[9] Antoni V, Agostinetti P, Aprile D, et al. Physics design of the injector source for ITER neutral beam injector(invited) [J]. Rev. Sci. Instrum., 2014, 85(2): 02B128.
[10] Fantz U, Hopf C, Wunderlich D, et al. Towards powerful negative ion beams at the test facility ELISE for the ITER and DEMO NBI systems [J]. Nucl. Fusion, 2017,57(11): 116007.
[11] Wunderlich D, Riedl R, Bonomo F, et al. Achievement of ITER-relevant accelerated negative hydrogen ion current densities over 1000s at the ELISE test facility [J]. Nucl.Fusion, 2019, 59(8): 084001.
[12] Heinemann B, Wunderlich D, Kraus W, et al.Achievements of the ELISE test facility in view of the ITER NBI [J]. Fusion Eng. Des., 2019, 146: 455−459.
[13] Toigo V, Piovan R, Dal Bello S, et al. The PRIMA test facility: SPIDER and MITICA test-beds for ITER neutral beam injectors [J]. New J. Phys., 2017, 19(8): 085004.
[14] Serianni G, Toigo V, Bigi M, et al. SPIDER in the roadmap of the ITER neutral beams [J]. Fusion Eng. Des., 2019, 146: 2539−2546.
[15] Toigo V, Dal Bello S, Gaio E, et al. The ITER neutral beam test facility towards SPIDER operation [J]. Nucl.Fusion, 2017, 57(8): 086027.
[16] Marcuzzi D, Agostinetti P, Dalla Palma M, et al. Final design of the beam source for the MITICA injector [J]. Rev. Sci. Instrum., 2016, 87 (2): 02B309.
[17] Fellin F, Boldrin M, Zaccaria P, et al. Plant integration of MITICA and SPIDER experiments with auxiliary plants and buildings on PRIMA site [J]. Fusion Eng. Des., 2015,96−97: 257−260.
[18] Boeuf J P, Chaudhury B, Garrigues L. Physics of a magnetic filter for negative ion sources. I. Collisional transport across the filter in an ideal, 1D filter [J]. Phys. Plasmas, 2012, 19(11): 113509.
[19] Boeuf J P, Claustre J, Chaudhury B, et al. Physics of a magnetic filter for negative ion sources. II. E × B drift through the filter in a real geometry [J]. Phys. Plasmas,2012, 19(11): 113510.
[20] FR Schle M, Fantz U, Franzen P, et al. Magnetic filter field for ELISE––Concepts and design [J]. Fusion Eng.Des., 2013, 88(6−8): 1015−1019.
[21] Schiesko L, Cartry G, Hopf C, et al. Cs-doped Mo as surface converter for H−/D− generation in negative ion sources: first steps and proof of principle [C].International Symposium on Negative Ions, 2015,1655(1): 020003.
[22] Wada M, Doi K, Kenmotsu T. Impact due to impurity contamination upon Cs consumption of a negative hydrogen ion source [C]. Fifth International Symposium on Negative Ions, Beams and Sources (NIBS 2016), 2017, 1869(1): 020003.
[23] Singh M J, de Esch H P L, Hemsworth R, et al. Mo layer thickness requirement on the ion source back plate for the HNB and DNB ion sources in ITER [C]. Fourth International Symposium on Negative Ions, Beams and Sources (NIBS 2014), 2015, 1655: 040007.
[24] Kojima A, Tobari H, Umeda N, et al. Demonstration of 1 MV insulation for the vacuum insulated beam source in the ITER neutral beam system [J]. Nucl. Fusion, 2019, 59(8): 086042.
[25] Kojima A, Hanada M, Tobari H, et al. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion [J]. Rev. Sci. Instrum., 2016, 87(2): 02B304.
|