Welcome to Nuclear Fusion and Plasma Physics, Today is Share:

Nuclear Fusion and Plasma Physics ›› 2021, Vol. 41 ›› Issue (4): 635-641.DOI: 10.16568/j.0254-6086.202104009

• Nuclear Fusion Engineering and Technology • Previous Articles     Next Articles

Optimization design and manufacture of cooling system for ITER PF6 magnet support 

WEI Hai-hong, LI Peng-yuan, ZHANG Teng, XU Dan, XU Wan-yun,SUN Zhen-chao, LUO rong-rong    

  1. (Southwestern Institute of Physics, Chengdu 610041) 

     
  • Received:2020-04-03 Revised:2020-11-26 Online:2021-12-15 Published:2022-01-11

ITER 极向场 PF6 磁体支撑冷却系统的优化设计及制造 

魏海鸿,李鹏远,张  腾,许  丹,许婉韵,孙振超,罗蓉蓉   

  1. (核工业西南物理研究院,成都 610041) 
  • 作者简介:魏海鸿(1988‒),男,甘肃天水人,硕士,助理研究员,主要从事低温与超导方面的研究工作。

Abstract: A deep hole drilling direct cooling scheme is proposed to optimize the design of the ITER poloidal 
field PF6 magnet support cooling system. The finite element analysis method is used to optimize the number and 
diameter of flow channels in terms of heat transfer efficiency, fluid pressure drop, and structural strength. The 
results show that 9 cooling channels with 10mm diameter can achieve best cooling effect. At the same time, the 
mechanical strength and temperature distribution of the supporting components, and the operating states of the 
fluid under service environments can meet the design requirements of the ITER magnet support. At present, all 
PF6 magnet supports have been manufactured and inspected, and successfully delivered to the ITER organization. 

Key words: Magnet support, Cooling system, Liquid helium, Finite element analysis, Manufacturing process 

摘要: 提出了深孔钻直冷方案用于优化 ITER 极向场 PF6 磁体支撑冷却系统设计。采用有限元分析方法,
从换热效率、流体压降、结构强度等方面对流道数量和孔径进行了最优化设计。结果表明,9 条直径 10mm 的冷
却流道可以达到最佳的冷却效果。同时,在服役环境下支撑部件的机械强度和温度分布、流体的运行参数均能满
足 ITER 磁体支撑的设计要求。目前所有 PF6 磁体支撑已完成了制造和检验,并顺利交付 ITER 组织。 

关键词: 磁体支撑, 冷却系统, 液氦, 有限元分析, 制造工艺

CLC Number: