[1] Choi C S, Prince E. The crystal structure of cyclotrimethylenetrinitramine [J]. Acta Crystallographica Section B, 1972, 28(9): 2857−2862.
[2] Li Y, Kalia R K, Nakano A, et al. Multistage reaction pathways in detonating RDX [C]. Biennial Aps Conference on Shock Compression of Condensed Matter,2017.
[3] Strachan A, Kober E M, van Duin A C, et al. Thermal decomposition of RDX from reactive molecular dynamics [J]. J. Chem. Phys., 2005, 122(5): 54502.
[4] Chakraborty D, Muller R P, Dasgupta S, et al.Mechanism for unimolecular decomposition of HMX (1,3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine), an ab initio study[J]. J. Phys. Chem. A, 2001, 105(8): 1302−1314.
[5] Van Duin A C, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons [J]. J. Phys. Chem.A, 2001, 105(41): 9396−9409.
[6] Strachan A, van Duin A C, Chakraborty D, et al. Shock waves in high-energy materials: The initial chemical events in nitramine RDX [J]. Phys. Rev. Lett., 2003,91(9): 98301.
[7] An Q, Liu Y, Zybin S V, et al. Anisotropic shock sensitivity of cyclotrimethylene trinitramine (RDX) from compress-and-shear reactive dynamics [J]. J. Phys. Chem.C, 2012, 116(18): 10198−10206.
[8] Zybin S V, Goddard III W A, Xu P, et al. Reactive molecular dynamics of shock-and shear-induced chemistry in energetic materials for future force insensitive munitions [C]. IEEE, 2009.
[9] Wood M A, Cherukara M J, Kober E M, et al. Ultrafast chemistry under nonequilibrium conditions and the shock to deflagration transition at the nanoscale [J]. J. Phys.Chem. C, 2015, 119(38): 22008−22015.
[10] Joshi K, Chaudhuri S. Observation of deflagration wave in energetic materials using reactive molecular dynamics[J]. Combustion and Flame, 2017, 184: 20−29.
[11] Lee J H, Kim J C, Jeon W C, et al. Explosion study of nitromethane confined in carbon nanotube nanocontainer via reactive molecular dynamics [J]. J. Phys. Chem. C,2017, 121(12): 6415−6423.
[12] Rappe A K, Goddard III W A. Charge equilibration for molecular dynamics simulations [J]. J. Phys. Chem.,1991, 95(8): 3358−3363.
[13] Tan S, Xia T, Shi Y, et al. Enhancing the oxidation of toluene with external electric fields: a reactive molecular dynamics study [J]. Scientific Reports, 2017, 7(1): 1710.
[14] Senftle T P, Hong S, Islam M M, et al. The ReaxFF reactive force-field: development, applications and future directions [J]. NPJ Computational Materials, 2016, 2:15011.
[15] Liu L, Liu Y, Zybin S V, et al. ReaxFF−lg: Correction of the ReaxFF reactive force field for London dispersion,with applications to the equations of state for energetic materials [J]. J. Phys. Chem. A, 2011, 115(40): 11016−11022.
[16] Robertson A J B. The thermal decomposition of explosives. Part II. Cyclotrimethylenetrinitramine and cyclotetramethylenetetranitramine [J]. Transactions of the Faraday Society, 1949, 45: 85−93.
[17] Joshi K L, Chaudhuri S. Reactive simulation of the chemistry behind the condensed-phase ignition of RDX from hot spots [J]. Phys. Chem. Chem. Phys., 2015,17(28): 18790−18801.
[18] Melius C F, Piqueras M C. Initial reaction steps in the condensed-phase decomposition of propellants [J].Proceedings of the Combustion Institute, 2002, 29(2):2863−2871. |