Welcome to Nuclear Fusion and Plasma Physics, Today is Share:

NUCLEAR FUSION AND PLASMA PHYSICS ›› 2015, Vol. 35 ›› Issue (2): 163-169.

• Nuclear Fusion Engineering and Technology • Previous Articles     Next Articles

Effect of heat flux and liquid lithium velocity on temperature distribution of free flow of liquid lithium

ZHU Zhi-chuan1, ZHANG Chuan-wu1, GOU Fu-jun2, WANG Jian-qiang2,YANG Dang-xiao3, MIAO Feng1   

  1. (1. College of Electrical and Information Engineering, Southwest University for Nationalities, Chengdu 610041; 2. Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064; 3. College of Physical Science and Technology, Sichuan University, Chengdu 610064)
  • Online:2015-06-15 Published:2015-06-15

热通量和液态锂流速对自由流动液态锂温度分布的影响

朱志川1,张传武1,芶富均2,王建强2,杨党校3,苗 峰*1   

  1. (1. 西南民族大学电气信息工程学院,成都 610041;2. 四川大学原子核科学技术研究所,成都 610064; 3. 四川大学物理科学与技术学院,成都 610064)
  • 作者简介:朱志川(1989-),男,安徽宿州人,硕士研究生,主要从事等离子体与材料表面相互作用研究。
  • 基金资助:

    国家磁约束核聚变能发展研究专项(2013GB114003);国家自然科学基金(11275135)

Abstract:

Commercial software ANSYS CFX are used to calculate the effect of heat flux and liquid lithium velocity on temperature distribution of the free flow of liquid lithium. The calculated results show that the temperature of liquid lithium is higher near the center of guiding groove, the temperature of liquid lithium is lowest in the location corresponding to inlet and outlet of cooling water. The outlet temperature of liquid lithium rises linearly with the increase of plasma heat flux. When the velocity of cooling water is 1.5m·s−1, heat flux are 0.1MW·m−2 and 1MW·m−2 respectively, the corresponding temperature of liquid lithium at outlet are 255.3°C and 458.6°C. The temperature of liquid lithium within guiding groove dropped gradually with increase of velocity of liquid lithium, but the amplitude of temperature variation is smaller.

Key words: Liquid lithium, Plasma, Heat flux, Temperature distribution

摘要:

应用商业软件ANSYS CFX 计算了等离子体热通量和液态锂流速对自由流动液态锂温度分布的影响。计算结果表明,导向槽中心附近液态锂温度较高,冷却水入口和出口对应位置液态锂温度最低。液态锂出口温度随着等离子体热通量的增大而线性升高,冷却水流速为1.5m·s−1,热通量分别为0.1MW·m−2 和1MW·m−2 时,液态锂在出口处对应的温度分别为255.3°C 和458.6°C。增大液态锂流速,导向槽内液态锂的温度逐渐降低,但温度变化的幅度较小。计算结果对液态锂回路安全稳定运行提供了一定参考。

关键词: 液态锂, 等离子体, 热通量, 温度分布

CLC Number: