[1] Martin G, Lipa M. Li3: first step studies of a liquid lithium limiter [J]. Fusion Engineering and Design, 2002,61−62: 237−243.
[2] Igor E L, Alexey V V. Experience and technical issues of liquid lithium application as plasma facing material in tokamaks [J]. Fusion Engineering and Design, 2010, 85:924−929.
[3] 邓柏权, 黄锦华, 严建成. 流动液态锂第一壁的物理可行性研究[R]. 北京: 中国核科技报告, 2002, 66−70.
[4] 邓柏权, 黄锦华, 彭利林, 等. 聚变堆包层流动锂液帘与堆芯兼容性评估[J]. 核聚变与等离子体物理, 2003,23(3): 170−175.
[5] Whyte D G, Evans T E, Wong C P, et al. Experimental observations of lithium as a plasma-facing surface in the DIII-D tokamak divertor [J]. Fusion Engineering and Design, 2004, 72: 133−147.
[6] Majeski R, Boaz M, Hoffman D, et al. CDX-U operation with a large area liquid lithium limiter [J]. J. Nucl. Mater.,2003, 313−316: 625−629.
[7] Robert Kaita, Laura Berzak, Dennis Boyle, et al.Experiments with liquid metal walls: status of the lithium tokamak experiment [J]. Fusion Engineering and Design,2010, 85: 874−881.
[8] 康伟山, 潘传杰, 许增裕. 液态金属自由表面在聚变堆中的运用研究 [J]. 科学技术与工程, 2006, 6(6):731−738.
[9] 张秀杰, 许增裕, 潘传杰, 等. 液态金属自由表面膜流MHD 效应的数值模拟[J]. 核聚变与等离子体物理,2008, 28(1): 28−33.
[10] 袁涛, 邓伯权, 陈志, 等. ITER 第一壁、偏滤器靶板和壁的热负荷计算[J]. 科学技术与工程, 2004, 4(9):772−774.
[11] 许增裕, 潘传杰, 张秀杰. 简化理论研究液态包层通道插件流体MHD 效应[J]. 核聚变与等离子体物理,2008, 28(3): 205−208.
[12] 邓柏权, 严建成, 黄锦华. 自由表面液态锂偏滤器靶板物理过程研究[J]. 核科学与工程, 2000, 20(4):373−378.
[13] Brooks J N, Rognlien T D, Ruzic D N, et al.Erosion/redeposition analysis of lithium-based liquid surface divertors [J]. J. Nucl. Mater., 2001, 290−293:185−190.
[14] Allain J P, Nieto M, Coventry M D, et al. Studies of liquid-metal erosion and free surface flowing liquid lithium retention of helium at the University of Illinois[J]. Fusion Engineering and Design, 2004, 72: 93−110.
[15] 唐婵, 王红艳, 裘浔隽, 等. 准静态液态金属锂铅在SLL 包层中的流动换热[J]. 核技术, 2013, 36(11):41−45.
[16] Khripunov B I, Petrov V B, Shapkin V V, et al.Experimental study of lithium target under high power load [J]. J. Nucl. Mater., 2001, 290−293: 201−205. |