[1] Park J, Henins I, Herrmann H W, et al. Gas breakdown in an atmospheric pressure radio-frequency capacitive plasma source [J]. J. Appl. Phys., 2001, 89: 20−28.
[2] Fridman G, Guesol A. Applied plasma medicine [J]. Plasma Processes and Polymers, 2008, 5(6): 503−533.
[3] 宋慧敏,李应红. 等离子体技术在航空领域中的应用研究 [J]. 航空与维修工程, 2004, 5: 19−20.
[4] Yang X, Moravej M, Nowling G R, et al. Comparison of an atmospheric pressure radio-frequency discharge operating in the α and γ modes [J]. Plasma Sources Science & Technology, 2005, 14(2): 314−320.
[5] 何金, 刘宝成, 吴明雷, 等. 大气压脉冲调制射频氦气 放 电 特 性 的 数 值 模 拟 [J]. 高 电 压 技 术 , 2014, 40(10): 3105−3111.
[6] 张远涛, 王冠. 大气压射频放电中放电参数对活性粒子影响值模拟研究 [J]. 高电压技术, 2016, 42(2): 428−438.
[7] 张杰. 脉冲调制对大气压射频辉光放电稳定性的影响[J]. 东华大学学报, 2017, 43(2): 293−297.
[8] Liu R Q, Liu Y, Jia W Z, et al. A comparative study on ontinuous and pulsed RF argon capacitive glow discharges at low pressure by fluid modeling [J]. Physics of Plasma, 2017, 24, 013517: 1−12.
[9] Lu X, Laroussi M. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses [J]. Journal of Applied Physics, 2006, 100(6): 063302.
[10] 姜慧,邵涛,于洋. 不同介质下纳秒脉冲介质阻挡放电特性对比 [J]. 高电压技术, 2011, 37(6): 1529−1534.
[11] 于洋, 邵涛, 章程, 等. 单极性纳秒脉冲介质阻挡放电电荷传输特性实验分析 [J]. 高电压技术, 2011, 37(6): 1555−1561.
[12] Walsh J L, Zhang Y T, Iza F, et al. Atmospheric-pressure gas breakdown from 2 to 100 MHz [J]. Appl. Phys. Lett.,2008, 93(22): 221505−3.
[13] Yuan X, Rala L L. Computational study of capacitively coupled high-pressure glow discharges in helium [J]. IEEE Trans Plasma Science, 2003, 31(4): 495−503.
[14] He J, Zhang Y T. Modeling Study on the generation of reactive oxygen species in atmospheric radio-frequency helium-oxygen discharge [J]. Plasma Processes and Polymers, 2012, 9(9): 919−928.
[15] Liu D W, Shi J J, Kong M G. Electron trapping in radio-frequency atmospheric-pressure glow discharges[J]. Appl. Phys. Lett., 2007, 90(4): 041502−3.
[16] 匙阳阳. 大气压脉冲调制射频放电中活性粒子演化特性的数值模拟研究 [D]. 济南: 山东大学, 2015.
|