[1] Ikeda K. Progress in the ITER physics basis [J]. Nucl. Fusion, 2007, 47(6): S1-S404.
[2] Li Q. The component development status of HL-2M tokamak [J]. Fusion Engineering and Design, 2015, 96: 338-342.
[3] Baxi C B. Supercritical helium as a coolant for DⅢ-D cryopumps [J]. Fusion Engineering and Design, 2005, 75: 633-636.
[4] Reis E E, Baxi C B, Bozek A S. Design and analysis of the cryopump for the DⅢ-D upper divertor [C]. Fusion
Engineering, 1999. 18th Symposium on. IEEE, 1999. 519-522.
[5] Menon M M, Anderson P M, Baxi C B, et al. Particle exhaust scheme using an in-vessel cryocondensation pump in the advanced divertor configuration of the DIII-D tokamak [J]. Fusion Science and Technology, 1992, 22(3): 356-370.
[6] Baxi C B, Langhorn A, Schaubel K, et al. Thermal analysis of a coaxial helium panel of a cryogenic vacuum pump for advanced divertor of DⅢ-D tokamak [R]. General Atomics, 1991.
[7] Luo X, Hauer V, Day C. Monte Carlo calculation of the thermal radiation heat load of the ITER preproduction cryopump [J]. Fusion Engineering and Design, 2012, 87(5-6): 603-607.
[8] Day C, Haas H, Hauer V, et al. Design progress for the ITER torus and neutral beam cryopumps [J]. Fusion Engineering and Design, 2011, 86(9-11): 2188-2191.
[9] 徐成海, 张世伟, 谢元华,等. 真空低温技术与设备 [M]. 北京: 冶金工业出版社, 2007.
[10] Xiang J I, Yuntao S, Guang S, et al. Optimization and update of EAST in-vessel components in 2011 [J]. Plasma Science and Technology, 2013, 15(3): 277.
[11] Reis E E, Almajan I, Baxi C, et al. Design and Analysis of the cryopump for the DⅢ-D advanced divertor [C]. Proc. of the 17th Symp. on Fusion Technology, 1992. 348.
[12] 才来中, 崔学武, 刘健, 等. HL-2M偏滤器的综合模拟技术初步研究 [J]. 核聚变与等离子体物理, 2016, 36(1): 1-7.
[13] 谢韩, 宋云涛, 王松可. ITER低温泵外部容器的结构设计与应力分析 [J]. 核聚变与等离子体物理, 2016, 36(2): 181-187. |