Welcome to Nuclear Fusion and Plasma Physics, Today is Share:

Nuclear Fusion and Plasma Physics ›› 2022, Vol. 42 ›› Issue (1): 63-70.DOI: 10.16568/j.0254-6086.202201011

• Plasma Physics • Previous Articles     Next Articles

Numerical calculation of plasma response to RMP for HL-2M tokamak

CHEN Hai-tao1, HAO Guang-zhou1, LIU Yue-qiang2, ZHOU Li-na3, CHEN Qian1, DUAN Xu-ru1   

  1. (1. Southwest Institute of Physics,Chengdu610041;2. General Atomic,San DiegoCA,USA, 92186-5608;3.DalianMaritime University,Dalian116026)
  • Received:2019-12-15 Revised:2021-03-09 Online:2022-03-15 Published:2022-04-14

HL-2M等离子体对共振磁扰动线圈电流相位响应的模拟

陈海涛1,郝广周*1,刘钺强2,周利娜3,陈  谦1,段旭如1   

  1. (1. 核工业西南物理研究院,成都 610041;2. 美国通用原子能公司,圣地亚哥 CA 92186-5608;3. 大连海事大学,大连 116026)

  • 作者简介:陈海涛(1996-),男,江西宁都人,硕士,从事等离子体物理研究。

Abstract: Using the toroidal single-fluid code MARS-F, the plasma response to the phase difference of the resonance magnetic perturbation (RMP) field coil currents is studied in HL-2M equilibrium configuration (Ip=1.0MA, βN=1.62, q95=4.01). At the optimal phase difference, the perturbing magnetic field significantly changes the topology of the magnetic field in the boundary layer, forms obvious magnetic island chains, increases the transport of plasma in the layer, and reduces the pressure gradient and the drive to the ELM. The optimal phase differences are about 180°, 150° and -30° for the n=1, 2 and 4 toroidal modulus of the disturbance fields, , respectively.

Key words: HL-2M tokamak, Resonance magnetic perturbation, Plasma response

摘要: 在HL-2M托卡马克平衡位形(Ip=1.0MA,βN=1.62,q95=4.01)下,使用环形单流体程序MARS-F研究了等离子体对共振磁扰动(RMP)线圈电流相位差的响应。在最优相位差时,扰动磁场显著地改变边界层磁场的拓扑,形成明显的磁岛链,增加了等离子体在边界层的输运,降低了压强梯度,减小了对ELM的驱动。模拟结果显示,扰动场环向模数为n=1时,最优的相位差约为180°;n=2时,最优的相位差约为150°;n=4时,最优的相位差约-30°。

关键词: HL-2M托卡马克, 外加扰动磁场, 等离子体共振响应

CLC Number: