[1] Nygren R E, Rognlien T D, Rensink M E, et al. A fusion reactor design with a liquid first wall and divertor [J].Fusion Engineering and Design, 2004, 72: 181−221.
[2] Narula M, Abdou M A, Ying A, et al. Exploring liquid metal plasma facing component (PFC) concepts——liquid metal film flow behavior under fusion relevant magnetic fields [J]. Fusion Engineering and Design, 2006, 81: 1543−1548.
[3] Hassanein A. Modeling hydrogen and helium entrapment in flowing liquid metal surfaces as plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2002,302: 41−48.
[4] Jaworski M A, Gerhardt S P, Morley N B, et al. Macro -scopic motion of liquid metal plasma facing components in a diverted plasma [J]. J. Nucl. Mater., 2011, 415:985−988.
[5] 康伟山, 潘传杰, 许增裕. 液态金属自由表面在聚变堆中的运用研究 [J]. 科学技术与工程, 2006, 6:730−738.
[6] 邓柏权. 聚变堆物理——新构思与新技术 [M]. 北京:中国原子能出版社, 2013. 112−119.
[7] Jaworski M A, Khodak A, Kaita R. Liquid-metal plasma-facing component research on the National
Spherical Torus Experiment [J]. Plasma Phys. Contr.Fusion, 2013, 55: 1−10.
[8] Coenen J W, Temmerman G De, Federici G, et al. Liquid metals as alternative solution for the power exhaust of future fusion devices: status and perspective [J]. Physica Scripta, 2014, 159: 1−7.
[9] 张秀杰, 许增裕, 潘传杰, 等. 液态金属自由表面膜流MHD 效应的数值模拟 [J]. 核聚变与等离子体物理,2008, 28(1): 28−33.
[10] 邓柏权, 黄锦华, 彭利林, 等. 聚变堆包层流动锂液帘与堆芯兼容性评估 [J]. 核聚变与等离子体物理, 2003,23(3): 170−175.
[11] Allain J P, Nieto M, Coventry M D, et al. Studies of liquid-metal erosion and free surface flowing liquid lithium retention of helium at the University of Illinois[J]. Fusion Engineering and Design, 2004, 72: 93−110.
[12] Baldwin M J, Lynch T, Chousal L, et al. An injector device for producing clean-surface liquid metal samples of Li, Ga and Sn-Li in vacuum [J]. Fusion Engineering and Design, 2004,70: 107−113.
[13] Conn R W, Doerner R P, Sze F C, et al. Deuterium plasma interactions with liquid gallium [J]. Nucl. Fusion,2002, 42: 1060−1066.
[14] Mirnov S V, Evtikhin V A. The tests of liquid metals (Ga,Li) as plasma facing components in T-3M and T-11M tokamaks [J]. Fusion Engineering and Design, 2006, 81:113−119.
[15] Assael M J, Kalyva A E, Antoniadis K D, et al. Reference data for the density and viscosity of liquid copper and liquid tin [J]. Journal of Physical and Chemical Reference Data, 2010, 39: 033−040.
[16] Morgan T W, Van den Bekerom D C M, De Temmerman G. Interaction of a tin-based capillary porous structure with ITER/DEMO relevant plasma conditions [J]. J. Nucl.Mater., 2015, 463(8): 1256–1259.
[17] Coventry M D, Allain J P, Ruzic D N. D+, He+ and H+ sputtering of solid and liquid phase tin [J]. J. Nucl. Mater.,2003, 313−316: 636−640.
[18] Coventry M D, Allain J P, Ruzic D N. Temperature dependence of liquid Sn sputtering by low-energy He+ and D+ bombardment [J]. J. Nucl. Mater., 2004, 335:115−120.
[19] Brooks J N. Modeling of sputtering erosion/redeposition-status and implications for fusion design [J]. Fusion Engineering and Design, 2002, 60: 515−526.
[20] Brooks J N, Rognlien T D, Rozic D N, et al. Erosion/rediposition analysis of lithium-based liquid surface divertors [J]. J. Nucl. Mater., 2001, 290−293: 185−190.
[21] Rognlien T D, Rensink M E. Edge-plasma properties in liquid-wall environments [J]. Contrib. Plasma Phys.,2002, 42(2−4): 193−198.
[22] Pacio J, Wetzel Th. Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems [J]. Solar Energy, 2013, 93:11−22.
|