[1] Post D E. A review of recent developments in atomic processes for divertors and edge plasmas[J]. J. Nucl. Maters., 1995, 220-222: 143.
[2] Fleck J A, Canfield E H. A random walk procedure for improving the computational efficiency of the implicit Monte Carlo method for nonlinear radiation transport[J]. J. Comput. Phys., 1984, 54: 508.
[3] Carolan P G, Piotrowicz V A. The behaviour of impuri- ties out of coronal equilibrium[J]. Plasma Phys., 1983, 25(10): 1065.
[4] Tokar M Z. Plasma behaviour near strong source of impurities[J]. Contrib. Plasma Phys., 1996, 36(2/3): 250.
[5] Braams B J. Radiative divertor modeling for ITER and TPX[J]. Contrib. Plasma Phys., 1996, 36(2/3), 276.
[6] Simonini R, Corrigan G, Radford G, et al. Models and numerics in the multi-fluid 2-D edge plasma code EDGE2D/U[J]. Contrib. Plasma Phys., 1994, 34(2/3): 368.
[7] Rognlien T D, Milovich J L, Rensink M E et al. A fully implicit, time dependent 2-D fluid code for modeling tokamak edge plasmas[J]. J. Nucl. Mater., 1992, 196- 198: 347.
[8] Cheng F Y, Takizuka T, Hayashi N, et al. Radiation loss in a compound plasma system with high and low temperature regions[J]. Chinese Phys., 2004, 13(11): 1902.
[9] Suzuki A, Takizuka T, Shimizu K, et al. An implicit Monte Carlo method for simulation of impurity transport in divertor plasma[J]. J. Comput. Phys., 1997, 131: 193.
[10] Post D E, Jensen R V, Tarter C B, et al. Steady state radiative cooling rates for low-density high-temperature plasmas[J]. At. Data Nucl. Data tables, 1977, 20: 397.
[11] Hulse R A. Numerical studies of impurities in fusion plasma[J]. Nucl. Techn/Fusion, 1983, 3: 259.
[12] Lan K, Zheng W D, Zhang Y Q, et al. Study on time- dependent coupled rate equations in non-LTE plasmas[J]. Chinese Journal of Lasers, 2001, B10(2): 131.