[1] 金成刚. 射频等离子体放电及材料处理研究 [D]. 苏州: 苏州大学, 2014.
[2] GODYAK V, CHUNG C W. Distributed ferromagnetic inductively
coupled plasma as an alternative plasma processing tool [J]. Japanese Journal
of Applied Physics, 2006, 45(10B): 8035.
[3] 刘雪丰, 廉翠红. 微等离子射频技术的临床应用进展 [J]. 健康之路, 2017, 16(8): 24.
[4] BATHGATE S N, BILEK M M M, MCKENZIE D R. Electrodeless
plasma thrusters for spacecraft: a review [J]. Plasma Science and Technology,
2017, 19(8): 24.
[5] CHEN F F. A compact permanent-magnet helicon thruster [J].
IEEE Transactions on Plasma Science, 2015, 43(1): 195.
[6] ELLINGBOE A R, BOSWELL R W. Capacitive, inductive and
helicon-wave modes of operation of a helicon plasma source [J]. Physics of
Plasmas, 1996, 3(7): 2797.
[7] CHEN F F, TORREBLANCA H. Large-area helicon plasma source
with permanent magnets [J]. Plasma Physics and Controlled Fusion, 2007, 49(5A):
A81-A93.
[8] CHABERT P, BRAITHWAITE N. Physics of radio-frequency
plasmas [M]. U.K.: Cambridge University Press, 2011.
[9] ISAYAMA S, SHINOHARA S, HADA T. Review of helicon
high-density plasma: production mechanism and plasma/wave characteristics [J].
Plasma and Fusion Research, 2018, 13: 1101014.
[10] CHEN F F, TORREBLANCA H. Density jump in helicon discharges
[J]. Plasma Sources Science and Technology, 2007, 16(3): 593.
[11] 雷凡. 磁化感应耦合放电等离子体产生数值模拟研究 [D]. 西安: 西安电子科技大学, 2020.
[12] DEGELING A, MIKHELSON N, BOSWELL R, et al. Characterization
of helicon waves in a magnetized inductive discharge [J]. Physics of Plasmas,
1998, 5(3): 572-579.
[13] 黄天源. 磁化射频等离子体放电实验研究 [D]. 苏州: 苏州大学, 2014.
[14] CHANG L, HU X Y, GAO L, et al. Coupling of RF antennas to
large volume helicon plasma [J]. AIP Advances, 2018, 8(4): 045016.
[15] CHANG L, LI Q, ZHANG H, et al. Effect of radial density
configuration on wave field and energy flow in axially uniform helicon plasma
[J]. Plasma Science and Technology, 2016, 18(8): 848.
[16] WANG R, CHANG L, HU X Y, et al. The role of second-order
radial density gradient for helicon power absorption [J]. Contributions to
Plasma Physics, 2019, 59(9): e201900032.
[17] TSIFAKIS D, CHARLES C, BOSWELL R. An inductively-coupled
plasma electrothermal radio- frequency thruster [J]. Frontiers in Physics,
2020, 8: 34.
[18] CHEN F F, ARNUSH D. Generalized theory of helicon waves. I.
Normal modes [J]. Physics of Plasmas, 1997, 4(9): 3411.
[19] ARNUSH D, CHEN F F. Generalized theory of helicon waves.
II. Excitation and absorption [J]. Physics of Plasmas, 1998, 5(5): 1239.
[20] LIGHT M, CHEN F F. Helicon wave excitation with helical
antennas [J]. Physics of Plasmas, 1995, 2(4): 1084.
[21] STIX H T. Oscillations of a cylindrical plasma [J].
Physical Review Journals, 1957, 106(6): 1146.
[22] KUWAHARA D, MISHIO A, NAKAGAWA T, et al. Development of
very small-diameter, inductively coupled magnetized plasma device [J]. Review
of Scientific Instruments, 2013, 84(10): 103502.
[23] MORI Y, NAKASHIMA H, BAITY F W, et al. High density
hydrogen helicon plasma in a non-uniform magnetic field [J]. Plasma Sources
Science and Technology, 2004, 13(3): 424-435.
[24] BLACKWELL B D, CANESES J F, SAMUELL C M, et al. Design and
characterization of the magnetized plasma interaction experiment (MAGPIE): a
new source for plasma-material interaction studies [J]. Plasma Sources Science
and Technology, 2012, 21(5): 1020-1027.
[25] YUAN X G, CHANG L, HU X Y, et al. Concept of sub-atmospheric
radio frequency engine (SURE) for near-space environment [J]. IEEE Transactions
on Plasma Science, 2020, 48(12): 4326.
[26] HU X Y, CHANG L. An efficient ionization method for
pressure up to thousands of pascals [A]. The 36th International Electric
Propulsion Conference [C]. Austria: University of Vienna, 2019.
[27] HU X Y, CHANG L, YUAN
X G, et al. A novel antenna for sub-atmospheric radio-frequency discharge [J].
Contributions to Plasma Physics, 2020, 60(4): e202000003.
|