[1] Robertson S. Sheath and presheath in plasma with warm
ions [J]. Physics of Plasmas, 2009, 16(10): 103503.
[2] Baalrud S D, Scheiner B, Yee B, et al. Extensions and
applications of the Bohm criterion [J]. Plasma Physics
and Controlled Fusion, 2015, 57(4): 044003.
[3] Moore N B, Gekelman W, Pribyl P. Ion energy distribution
function measurements by laser-induced fluorescence in a
dual radio frequency sheath [J]. Journal of Vacuum Science
and Technology A, 2016, 34(2): 021303.
[4] Milhone J, Flanagan K, Nornberg M D, et al. A
spectrometer for high-precision ion temperature and
velocity measurements in low-temperature plasmas [J].
Review of Scientific Instruments, 2019, 90(6): 063502.
[5] Goeckner M J, Goree J, Sheridan T E. Laser-induced
fluorescence characterization of a multidipole filament
plasma [J]. Physics of Fluids B: Plasma Physics, 1991,
3(10): 2913.
[6] D'Angelo N, Alport M J. On 'anomalously' high ion
temperatures in plasma discharges [J]. Plasma Physics,
1982, 24(10): 1291.
[7] Limpaecher R, Mackenzie K R. Magnetic multipole
containment of large uniform collisionless quiescent
plasmas [J]. Review of Scientific Instruments, 1973,
44(6): 726.
[8] Chu F, Skiff F. Determining metastable ion lifetime and
history through wave-particle interaction [J]. Physical
Review Letters, 2019, 122(7): 075001.
[9] Yip C-S, Hershkowitz N, Severn G. Experimental test of
instability-enhanced collisional friction for determining
ion loss in two ion species plasmas [J]. Physical Review
Letters, 2010, 104(22): 225003.
[10] Oksuz L, Khedr M A, Hershkowitz N. Laser induced
fluorescence of argon ions in a plasma presheath [J].
Physics of Plasmas, 2001, 8(5): 1729.
[11] Severn G D, Wang X, Ko E, et al. Experimental studies
of the Bohm criterion in a two-ion-species plasma using
laser-induced fluorescence [J]. Phys Rev Lett, 2003,
90(14): 145001.
[12] Lee D, Hershkowitz N, Severn G D. Measurements of
Ar+
and Xe+
velocities near the sheath boundary of Ar-Xe
plasma using two diode lasers [J]. Applied Physics Letters, 2007, 91(4): 041505.
[13] Aguirre E M, Scime E E, Thompson D S, et al. Spatial
structure of ion beams in an expanding plasma [J].
Physics of Plasmas, 2017, 24(12): 123510.
[14] Mazouffre S, Gawron D, Kulaev V, et al. Xe+
Ion
transport in the crossed-field discharge of a 5-kW-Class
Hall effect thruster [J]. IEEE Transactions on Plasma
Science, 2008, 36(5): 1967.
[15] Hargus W A, Cappelli M A. Laser-induced fluorescence
measurements of velocity within a hall discharge [J].
Applied Physics B, 2014, 72(8): 961.
[16] Hargus W A, Nakles M R. Ion velocity measurements within
the acceleration channel of a low-power hall thruster [J].
IEEE Transactions on Plasma Science, 2008, 36(5): 1989.
[17] Williams G J, Smith T B, Domonkos M T, et al.
Laser-induced fluorescence characterization of ions
emitted from hollow cathodes [J]. IEEE Transactions on
Plasma Science, 2000, 28(5): 1664.
[18] Mcwilliams R, Booth J P, Hudson E A, et al. Laser-induced
fluorescence ion diagnostics in light of plasma processing [J].
Thin Solid Films, 2007, 515(12): 4860.
[19] 郭松杰, 周月婷, 吴永前, 等. 基于自制超稳定 F-P 腔
压窄 632.8nm 外腔半导体激光线宽的实验研究 [J]. 光
谱学与光谱分析, 2021, 41(2): 339.
[20] 缪鑫, 王琦, 邓勇, 等. 基于温度闭环反馈的 He-Ne 激
光器热稳频系统 [J]. 激光技术, 2022, 46(6): 755.
[21] Goodfellow I, Bengio Y, Courville A. 深度学习 [M].
北京: 人民邮电出版社, 2017.
[22] Chang C H, Chou C N, Chang E Y. CLKN: Cascaded
lucas-kanade networks for image alignment [A].
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition [C]. USA: IEEE, 2017. 2213.
[23] DeTone D, Malisiewicz T, Rabinovich A. Deep image
homography estimation [W]. ArXiv preprint ArXiv:
1606.03798, 2016. http://arxiv.org
[24] Nowruzi F E, Laganiere R, Japkowicz N. Homography
estimation from image pairs with hierarchical
convolutional networks [A]. Proceedings of the IEEE
International Conference on Computer Vision Workshops
[C]. USA: IEEE, 2017. 913.
[25] Nguyen T, Chen S W, Shivakumar S S, et al.
Unsupervised deep homography: a fast and robust
homography estimation model [J]. IEEE Robotics and
Automation Letters, 2018, 3(3): 2346.
|