[1] Wagner F, Becker G, Behringer K, et al. Regime of
improved confinement and high beta in neutral-beamheated divertor discharges of the ASDEX tokamak [J].
Phys. Rev. Lett., 1982, 49(19): 1408-1412.
[2] Jahns G L, Groebner R J, John H S. Comparison of
transport in H- and L-phase discharges in the DIII-D
tokamak [J]. Nucl. Fusion, 1989, 29(8): 1271.
[3] ASDEX Team. The H-mode of ASDEX [J]. Nucl. Fusion, 1989, 29(11): 1959−2040.
[4] Zohm H, Wagner F, Endler M, et al. Studies of edge
localized modes on ASDEX [J]. Nucl. Fusion, 1992,
32(3): 489-494.
[5] Wang L, Xu G S, Guo H Y, et al. Particle and power
deposition on divertor targets in EAST H-mode plasmas
[J]. Nucl. Fusion, 2012, 52(6): 063024.
[6] Eich T, Andrew P, Herrmann A, et al. ELM resolved
energy distribution studies in the JET MKII gas-box
divertor using infra-red thermography [J]. Plasma Phys.
Contr. Fusion, 2007, 49(5): 573−604.
[7] Petrie T W, Evans T E, Brooks N H, et al. Results from
radiating divertor experiments with RMP ELM
suppression and mitigation [J]. Nucl. Fusion, 2011, 51(7):
073003.
[8] Thornton A J, Kirk A, Cahyna P, et al. The effect of
resonant magnetic perturbations on the divertor heat and
particle fluxes in MAST [J]. Nucl. Fusion, 2014, 54(6):
064011.
[9] Lang P T, Neuhauser J, Horton L D, et al. ELM
frequency control by continuous small pellet Injection in
ASDEX Upgrade [J]. Nucl. Fusion, 2003, 43: 1110-1120.
[10] Baylor L R, Commaux N, Jernigan T C, et al. Reduction
of edge-localized mode intensity using high-repetition
-rate pellet injection in tokamak H-mode plasmas [J].
Phys. Rev. Lett., 2013, 110(24): 245001.
[11] Rapp J, Garbet P M, Matthews G F, et al. Reduction of
divertor heat load in JET ELMy H-modes using impurity
seeding techniques [J]. Nucl. Fusion, 2004, 44: 312−319.
[12] Matos F A, Ferreira D R, Carvalho P J. Deep learning for
plasma tomography using the bolometer system at JET
[J]. Fusion Eng. Design, 2017, 114: 18−25.
[13] Rietman E A, Beachy M. A study on failure prediction in
a plasma reactor [J]. IEEE Transactions on
Semiconductor Manufacturing, 1998, 11(4): 670−680.
[14] Cannas B, Cau F, Fanni A, et al. Automatic disruption
classification at JET: comparison of different pattern
recognition techniques [J]. Nucl. Fusion, 2008, 46(7):
699.
[15] 刘春华, 侯智培, 王瑜琴, 等. 人工神经网络在
HL-2A 装置汤姆逊散射数据处理中的应用 [J]. 强激
光与粒子束, 2019, 31(2): 41−47.
[16] 黄尧,夏凡,杨宗谕, 等. 基于深度学习的 ELM 实时
识别研究 [J]. 核聚变与等离子体物理, 2020, 40(4):
301−308.
[17] 高金明, 程钧, 严龙文, 等. HL-2A 装置超声分子束注
入缓解偏滤器靶板上边缘局域模热通量研究 [J]. 核
聚变与等离子体物理, 2015, 35(1): 1−7.
[18] Yao L H, Tang N Y, Cui Z Y, et al. Plasma behavior with
molecular beam injection in the HL-1M tokamak [J].
Nucl. Fusion, 1998, 38(4): 631-638.
[19] 冯北滨, 姚良骅, 李伟, 等. HL-2A 装置偏滤器位形超
声分子束注入深度观测 [J]. 核聚变与等离子体物理,
2008, 28(2): 97-100.
[20] Yu D L, Chen C Y, Yao L H, et al. Penetration
characteristics of supersonic molecular beam injection on
HL-2A tokamak [J]. Nucl. Fusion, 2010, 50(3): 035009.
|