[1] 刘建勇. 对自然氧化法除铁工艺的强化 [J]. 净水技术, l999, l 7(4): 18-20.
[2] Jong-Il Park, Jinwoo Cheon. Synthesis of “solid solution” and “core-shell” type cobalt-platinum magnetic nano- particles via transmetalation reactions [J]. J. Am. Chem. Soc., 2001, 123(24): 5743-5746.
[3] Ruslan Z Valiev. Structure and mechanical properties of ultrafine-grained metals [J]. Matel. Sci. Eng., 1997, 234 (A): 59-66.
[4] Ping Liu, Yuming Wang. Study on twin stacking faults in ultrafine nickel [J]. Materials and Design, 2000, 21(3): 155-157.
[5] Granqvist C G, Buhrman R A. Ultrafine metal particles [J]. J. Appl. Phys., 1976, 47(5): 2200-2219.
[6] 廉舒, 卢忠仁, 史桂梅, 等. 直流电弧法制备金属铁, 镍纳米粉体 [A]. 石油化工高等学校学报, 2007, 20(2): 30-33.
[7] Zheng Hua-gui, Liang Jia-he, Zeng Jing-hui, et al. Preparation of nickel nanopowders in ethanol-water system (EWS) [J]. Materials Research Bulletin, 2001, 36 (5-6): 947-952.
[8] 李星国, 廖复辉. 直流电弧等离子体法合成金属和陶瓷纳米颗粒过程 [A]. 工程学报, 2002, 2(4): 295-300.
[9] Ioan Bica. Nanoparticle production by plasma [J]. Mater. Sci. Eng., 1999, 68(B): 5-9.
[10] Vinayak P Dravid, Jonathon J Host, Teng M H, et a1. Controlled-size nanocapsules [J]. Nature, 1995, 374(13): 602.
[11] Yahachi Saito. Nanoparticles and filled nanocapsules [J]. Carbon, 1995, 33(7): 979-988.
[12] Ajayan P M, Iijirma S. Capillarity-induced filling of carbon nanotubes [J]. Nature, 1993, 361(28): 333—334.
[13] Mchenry M E, Majetich S A, Artlman J O, et a1. Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process [J]. Phys. Rev. B, 1994, 49(16): 11358-11363.
[14] Saito Y, Yoshikawa T, Okuda M, et a1. Cobalt particles wrapped in graphitic carbon prepared by an arc discharge, method [J]. J. Appl. Phys., 1994, 75(1): 134-137.
[15] Wang Z H, Zhang Z D, Choi C J, et a1. Structure and magnetic properties of Fe(C) and Co(C) nanocapsules prepared by chemical vapor condensation [J]. J. Alloys and Compounds, 2003, 361(1-2): 289-293.
[16] Young J Y, Hong K B. Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition [J]. Diamond and Related Materials, 2001, 10(3-7): 1214 -1217.
[17] Song H H, Chen X H. Large-scale synthesis of carbon -encapsulated iron carbide nanoparticles by cocarbon- ization of durene with ferrocene [J]. Chem. Phys. Lett., 2003, 374(3-4): 400-404.
[18] Weize Wu, Zhenping Zhu, Zhenyu Liu, et al. Preparation of carbon-encapsulated iron carbide nanoparticles by an explosion method [J]. Carbon, 2003, 41(2): 317-321.
[19] Bonard J M, Seraphin S, Wegrowe J E. Varying the size and magnetic properties of carbon-encapsulated cobalt particles [J]. Chem. Pyhs. Lett., 2001, 343(3-4): 251 -257.
[20] Dong X L, Zhang Z D, Chuang Y C, et a1. Character- ization of ultrafine Fe-Co particles and Fe-Co(C) nano- capsules [J]. Phys. Rev. B, 1999, 60(5): 3017-3020.
[21] 陈学刚, 宋怀河, 陈晓红, 等. 萘和二茂铁共碳化制备纳米Fe/C材料的研究 [J]. 新型炭材料, 2000, 15(4): 5-8.
[22] Dieter Vollath. Plasma synthesis of nanopowders [J]. J. Nanoparticle Research, 2008, 10: 39-57.
[23] Sankaran R Mohan. Microplasma synthesis of nano- particles [R]. ICPIG, 2009, 29.
[24] 欧阳鸿武, 孟小杰, 黄誓成, 等. 纳米铁及氧化铁粉制备技术进展 [J]. 粉末冶金材料科学与工程, 2008, 13(6): 315-322.
[25] 张现平, 张志焜, 崔作林. 氢电弧等离子体法制备碳包铁纳米颗粒 [J]. 材料科学与工程学报, 2004, 22(4): 596-598.
[26] 魏智强, 朱林, 乔宏霞, 等. 直流碳弧等离子体法制备碳包覆铁纳米颗粒研究 [J]. 真空科学与技术学报, 2008, 28(5): 454-457.
[27] Kwang-Leong Choy. Innovative processing of films and nanocrystalline powders [M]. London: Imperial College Press, 2002, 294.
[28] Barankin M D, Creyghton Y, Schmidt Ott A. Synthesis of nanoparticles in an atmospheric pressure glow discharge [J]. J. Nanoparticle Research, 2006, 8(3-4): 511-517.
[29] Nowling G R, Babayan S E, Jankovic V, et al. Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure [J]. Plasma Sources Science and Technology, 2002, 11: 97-103.
[30] Vollath D, Szabo D V. The microwave plasma process -a versatile process to synthesize nanoparticulate materials [J]. J. Nanoparticle Research, 2006, 8(3-4): 417-428.
[31] Vons V, Creyghton Y, Schmidt Ott A. Nanoparticle production using atmospheric pressure cold plasma [J]. J. Nanoparticle Research, 2006, 8(5): 721-728.
[32] Yan Z C, Chen L, Wang H L. Hydrogen generation by glow discharge plasma electrolysis of ethanol solutions. J. Phys. D: Appl. Phys., 2008, 41: 155205.
[33] Zheng J, Sun B, Yang R, et al. Metal Al produced by H2 plasma reduction of AlCl3: a thermodynamic and kinetic study on the plasma chemistry [J]. J. Phys. Chem. B, 2008, 112: 12748-12752.
[34] Wei Z H, Liu C J. Synthesis of monodisperse gold nanoparticles in ionic liquid by applying room temperature plasma [J]. Material Letters, 2011, 65: 353 -355.
[35] Kaneko T, Baba K, Hatakeyama R. Gas-liquid interfacial plasmas: basic properties and applications to nano- material synthesis [J]. Plasma Phys. Contr. Fusion, 2009, 51: 124011.
[36] Furusho H, Kitano K, Hamagushi S, et al. Preparation of stable water-dispersible pegylated gold nanoparticles assisted by nonequilibrium atmospheric-pressure plasma jets [J]. Chem. Mater., 2009, 21, 3526-353.
[37] Meiss S A, Rohnke M, Kienle L, et al. Employing plasmas as gaseous electrodes at the free surface of ionic liquids: deposition of nanocrystalline silver particles [J]. Chem. Phys. Chem., 2007, 8: 50-53.
[38] Richmonds C, Sankaran R M. Plasma-liquid electro- chemistry: rapid synthesis of colloidal metal nano- particles by microplasma reduction of aqueous cations [J]. Appl. Phys. Lett., 2008, 93(13): 131501.
[39] Koo I G, Lee M S, Shim J H, et al. Platinum nano- particles prepared by a plasma-chemical reduction method [J]. J. Mater. Chem., 2005, 15: 4125-4128.
[40] Liang X, Wang Z J, Liu C J. Size-controlled synthesis of colloidal gold nanoparticles at room temperature under the in?uence of glow discharge [J]. Nanoscale. Res. Lett., 2010, 5: 124-129.
[41] Chiang W H, Richmonds C, Sankaran R M. Continuous- ?ow atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase plasma sources [J]. Sci. Techn., 2010, 034011.
[42] Torimoto T, Okazaki K, Kiyama T. Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultra?ne metal nanoparticles [J]. Appl. Phys. Lett., 2006, 89: 243117. |