[1] Philipps V. Tungsten as material for plasma-facing components in fusion devices [J]. Journal of Nuclear Materials, 2011, 415(1): S2.
[2] Takamura S, Ohno N, Nishijima D, et al. Formation of nanostructured tungsten with arborescent shape due to helium plasma irradiation [J]. Plasma & Fusion Research,2006, 1: 51.
[3] Tanabe T. Review of hydrogen retention in tungsten [J].Physica Scripta, 2014, T159: 014044.
[4] Li Y G, Zheng Q R, Wei L M, et al. A review of surface damage/microstructures and their effects on hydrogen/helium retention in tungsten [J]. Tungsten, 2020, 2(4): 34.
[5] Meyer F W. He-ion induced surface morphology change and nanofuzz growth on hot tungsten surfaces [J]. Journal of Physics B: Atomic Molecular and Optical Physics,2019, 52(1): 012001.
[6] Hammond K D. Helium, hydrogen, and fuzz in plasma-facing materials [J]. Materials Research Express,2017, 4(10): 104002.
[7] 钱伟, 郑鹏飞, 王炼, 等. 含钼涂层钨材料在氦等离子体作用下的前期表面形貌演变研究 [J]. 核聚变与等离子体物理, 2020, 40(2): 142-147.
[8] Manhard A, Schmid K, Balden M, et al. Influence of the microstructure on the deuterium retention in tungsten [J].Journal of Nuclear Materials, 2011, 415(1): S632.
[9] Garrison L M, Meyer F W, Bannister M E. The influence of microstructure on deuterium retention in polycrystalline tungsten [J]. Fusion Science and Technology,2017, 72(4): 574-580.
[10] Zhu X L, Cheng L, Temmerman G D, et al. Effects of stress-relief pre-annealing on deuterium trapping and diffusion in tungsten [J]. Fusion Engineering and Design,2017, 125: 526.
[11] Wang K, Sun H T, Zan X, et al. Evolution of microstructure and texture of moderately warm-rolled pure tungsten during annealing at 1300°C [J]. Journal of Nuclear Materials, 2020, 540: 152412.
[12] Wang K, Ren D Y, Zan X, et al. Recrystallization behavior of pure tungsten hot-rolled with high accumulated strain during annealing at 1250℃-1350℃[J]. Materials Science and Engineering: A, 2021, 806:140828.
[13] Rollett A, Humphreys F J, Rohrer G S, et al.Recrystallization and related annealing phenomena [M].Netherlands: Elsevier, 2004.
[14] Baldwin M J, Doerner R P. Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades [J].Journal of Nuclear Materials, 2010, 404(3): 165-173.
[15] Wang K, Bannister M E, Meyer F W, et al. Effect of starting microstructure on helium plasma-materials interaction in tungsten [J]. Acta Materialia, 2016, 124:556-567.
[16] Roa J J, Vinas M T, Anglada M. Surface grain size and texture after annealing ground zirconia [J]. Journal of the European Ceramic Society, 2016, 36(6): 1519-1525.
[17] Melk L, Mouzon J, Turon M, et al. Surface microstructural changes of spark plasma sintered zirconia after grinding and annealing [J]. Ceramics International, 2016,42(14): 15610-15617.
[18] Zayachuk Y, Tanyeli I, Boxel S V, et al. Combined effects of crystallography, heat treatment and surface polishing on blistering in tungsten exposed to high-flux deuterium plasma [J]. Nuclear Fusion, 2016, 56(8): 086007.
[19] Pitts R A, Carpentier S, Escourbiac F, et al. A full tungsten divertor for ITER: physics issues and design status [J]. Journal of Nuclear Materials, 2013, 438: S48.
[20] Kajita S, Sakaguchi W, Ohno N, et al. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions [J].Nuclear Fusion, 2009, 49(9): 095005.
|