[1] Nedospasov A V, Petrov V G. Model of the unipolar arc
on a tokamak wall [J]. Journal of Nuclear Materials, 1978,
76−77: 490.
[2] Schwirzke F. Unipolar arc model [J]. Journal of Nuclear
Materials, 1984, 128−129: 609.
[3] Jüttner B, Laux M, Lingertat J, et al. Arc tracks in the
T-10 tokamak [J]. Nuclear Fusion, 1980, 20(4): 497.
[4] 朱毓坤, 严东海, 王明旭, 等. HL-1 装置中的等离子体
与器壁相互作用 [J]. 核聚变与等离子体物理, 1988,
9(2): 65.
[5] Rohde V, Endstrasser N, Toussaint U V, et al. Tungsten
erosion by arcs in ASDEX upgrade [J]. Journal of
Nuclear Materials, 2011, 415(1): S46.
[6] Ding R, Rudakov D L, Stangeby P C, et al. Advances in
understanding of high-Z material erosion and
re-deposition in low-Z wall environment in DIII-D [J].
Nuclear Fusion, 2017, 57(5): 56016.
[7] Pitts R A, Carpentier S, Escourbiac F, et al. A full
tungsten divertor for ITER: physics issues and design
status [J]. Journal of Nuclear Materials, 2013, 438: S48.
[8] Suckewer S, Hawryluk R J. Plasma edge cooling during
RF heating [J]. Physical Review Letters, 1978, 40(25):
1649.
[9] Tokitani M, Kajita S, Masuzaki S, et al. Exfoliation of the
tungsten fibreform nanostructure by unipolar arcing in
the LHD divertor plasma [J]. Nuclear Fusion, 2011,
51(10): 102001.
[10] Kajita S, Fukumoto M, Tokitani M, et al. Impact of
arcing on carbon and tungsten: from the observations in
JT-60U, LHD and NAGDIS-II [J]. Nuclear Fusion, 2013,
53(5): 53013.
[11] Kajita S, Takamura S, Ohno N. Motion of unipolar arc
spots ignited on a nanostructured tungsten surface [J].
Plasma Physics and Controlled Fusion, 2011, 53(7):
74002.
[12] Liu L, Liu D P, Hong Y, et al. High-flux He+
irradiation
effects on surface damages of tungsten under ITER
relevant conditions [J]. Journal of Nuclear Materials,
2016, 471: 1.
[13] Barengolts S. A, Mesyats G A, Tsventoukh M M. The
ecton mechanism of unipolar arcing in magnetic
confinement fusion devices [J]. Nuclear Fusion, 2010,
50(12): 125004.
|