[1]Shibata K. New observational facts about solar flares from Yohkoh studies-evidence of magnetic reconnection and a unified model of flares [J]. Adv. Space Res, 1996, 17(1): 9-18.
[2]Baker D N, Pulkkinen T I, Angelopoulos V, et al. Neutral line model of substorms: past results and present view [J]. J. Geophys. Res., 1996, 101(A6): 12975-13010.
[3]Waelbroeck F L. Current sheets and nonlinear growth of the m=1 kink-tearing mode [J]. Phys. Fluids, 1989, B 1(12): 2372-2380.
[4]Furth P H, Killeen J, Rosenbluth M N. Finite-resistivity instabilities of a sheet pinch [J]. Phys. Fluids, 1963, 6(3): 459-484.
[5]Chacon L, Knoll D A. A 2D high-β Hall MHD implicit nonlinear solver [J]. J. Comput. Phys., 2003, 188(4): 573-592.
[6]Fitzpatrick R. Scaling of forced magnetic reconnection in the Hall-magnetohydrodynamic Taylor problem [J]. Phys. Plasmas, 2004, 11(3): 937-946.
[7]He Zhixiong, Dong J Q, Long Y X, et al. Double tearing mode induced by parallel electron viscosity in tokamak plasmas [J]. Phys. Plasmas, 2010, 17(11): 112102.
[8]Fitzpatrick R, Waelbroeck F L. Two-fluid magnetic island dynamics in slab geometry [J]. Phys. Plasmas, 2005, 12(2): 022307.
[9]Bian N, Vekstein G. On the two-fluid modification of the resistive tearing instability [J]. Phys. Plasmas, 2007, 14(7): 072107.
[10]Chacón L, Knoll D A, Finn J M. An implicit nonlinear reduced resistive MHD solver [J]. J. Comput. Phys., 2002, 178(1): 15-36.
[11]Yabe T, Aoki T. A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One- dimensional solver [J]. Comput. Phys. Commun., 1991, 66(2-3): 219-232.
[12]Yabe T, Ishikawa T, Wang P Y, et al. A universal solver for hyperbolic equations by cubic-polynomial inter- polation II. Two- and three-dimensional solvers [J]. Comput. Phys. Commun., 1991, 66(2?3): 233-242.
[13]Knoll D A, Chacón L. Magnetic reconnection in the two-dimensional Kelvin-Helmholtz instability [J]. Phys. Rev. Lett., 2002, 88(21): 215003. |