[1] Roth R M, Spears K G, Stein G D, et al. Spatial dependence of particle light scattering in an rf silane discharge [J]. Appl. phys. Lett., 1985, 46: 253-255.
[2] Jellum G M, Graves D B. Particulates in aluminum sputtering discharges [J]. J. Appl. Phys., 1990, 67: 6490- 6496.
[3] Hua J J, Ye M F , Wang L, et al. Pattern formation in a dusty plasma system [J]. Plasma Sci. Techn., 2004, 6: 2571-2575.
[4] Maemura Y, Yang S C, Fujiyama H. Transport of negatively charged particles by E×B drift in silane plasmas [J]. Surface and Coatings Techn., 1998, 98: 1351-1358.
[5] Tazoe K, Yang S C , Maemura Y, et al. Correlation betw- een silicon particles and modulated crossed magnetic field in silane plasmas [J]. Thin Solid Films, 1999, 341: 55-58.
[6] 佟嵩, 刘湘娜, 王路春, 等. PECVD 纳米晶粒硅薄膜的可见电致发光 [J]. 物理学报, 1997, 46: 1217-1222.
[7] 刘湘娜, 吴晓微, 鲍希茂, 等. 用等离子体增强化学汽相沉积方法制备纳米晶粒硅薄膜光致发光 [J]. 物理学报, 1994, 43: 965-990.
[8] Furukawa S, Tatsuro Miyasato. Quantum size effects on the optical band gap of microcrystalline Si:H [J]. Phys. Rev. B, 1988, 38: 5726-5729.
[9] Rucksckloss M, Landkammer B, Veprrek S. Light emit- ing nanocrystalline silicon prepared by dry processing: the effect of crystallite size [J]. Appl. Phys. Lett., 1993, 63: 1474-1476.
[10] Zhao X, Schoenfeld Olaf, Yoshinobu Aoyagi, et al. Violet luminescence from anodized microcrystalline silicon [J]. Appl. Phys. Lett., 1994, 65: 1290-1292.
[11] Takagi H, Ogawa H, Yamazaki Y, et al. Quantum size effects on photoluminescence in ultrafine Si particles [J]. Appl. Phys. Lett., 1990, 56: 2379-2380.
[12] Graf U, Meier J, Kroll U, et al. High rate growth of mic- rocrystalline silicon by VHF-GD at high pressure [J]. Thin Solid Film, 2003, 427: 37-40.
[13] Nandini Gupta, Stoffels W W , Kroesen G M W. Numeri- cal simulation of primary cluster formation in silane plasmas [J]. J. Phys. D: Appl. Phys., 2003, 36 : 837-841.
[14] Gallagher Alan. Model of particle growth in silane disch- arges [J]. Phys. Rev. E, 2000, 62: 2690-2706.
[15] Courteille C, Hollenstein Ch, Dorier J L, et al. Particle agglomeration study in rf silane plasmas: In situ study by polarization-sensitive laser light scattering [J]. J. Appl. Phys., 1996, 80: 2069-2078.
[16] Fridman A A, Boufendi L, Hbid T, et al. Dusty plasma formation: physics and critical phenomena . Theoretical approach [J]. J. Appl. Phys., 1996, 79: 1303-1314.
[17] Kortshagen U , Bhandarkar U. Modeling of particulate coagulation in low pressure plasmas [J]. Phys. Rev. E, 1999, 60: 887-898.
[18] Denysenko I B, Ostrikov K, Xu S, et al. Nanopowder management and control of plasma parameters in electronegative SiH4 plasmas [J]. J. Appl. Phys., 2003, 94: 6097-6107.
[19] Kathleen De Bleecker, Annemie Bogaerts, Renaat Gijbes. Numerical investigation of particle formation mechan- isms in silane discharges [J]. Phys. Rev. E, 2004, 69 (056409): 1-16.
[20] Kondo Michio, Fukawa Makoto, Guo Lihui. High rate growth of microcrystalline silicon at low temperatures [J]. J. Non-Crystalline Solids, 2000, 266: 84-89.
[21] Mai Y, Klein S, Carius R, et al. Microcrystalline silicon solar cells deposited at high rates [J]. J. Appl. Phys., 2005, 97(114913): 1-12.
[22] Boufendi A Bouchoule. Industrial developments of scien- tific insights in dusty plasmas [J]. Plasma Sources Sci. Techn., 2002, 11: A211-A218.
[23] Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing [M]. New York: Wiley, 1994.
[24] Ostrkov K, Denysenko I B, Vladimirov S V, et al. Low- pressure diffusion equilibrium of electronegative com- plex plasmas [J]. Phys. Rev. E, 2003, 67(056408): 1-13.
[25] Boeuf J P, Belenguer Ph. Transition from a capacitive to a resistive regime in a silane radio frequency discharge and its possible relation to powder formation [J]. J. Appl. Phys., 1992, 71: 4751-4754.
[26] 韩伟强. 纳米硅系薄膜研究 [D]. 浙江大学, 1995.
[27] Haaland P. Dissociative attachment in silane [J]. J. Chem. Phys., 1990, 93: 4066-4072. |