[1] Yang Y, Kushner M J. 450mm dual frequency
capacitively coupled plasma sources: Conventional,
graded, and segmented electrodes [J]. J. Appl. Phys.,
2010, 108(11): 035003.
[2] Sung D, Vladimir V, Wonsub H, et al. Frequency and
electrode shape effects on etch rate uniformity in a
dual-frequency capacitive reactor [J]. Journal of Vacuum
Science & Technology A., 2012, 30(6): 061301.
[3] Yuan Q H, Li Y, Yin G Q. The synthesis of C, N-codoped
TiO2 hollow spheres by a dual-frequency atmospheric
pressure cold plasma jet [J]. J. Mater Sci., 2019, 54(19):
12488.
[4] Fang Z, Ding Z, Shao T, et al. Hydrophobic surface
modification of epoxy resin using an atmospheric
pressure plasma jet array [J]. IEEE Trans. Dielectr. Electr.
Insul., 2016, 23(4): 2288.
[5] Kleines L, Jaritz M, Wilski S, et al. Enhancing the
separation properties of plasma polymerized membranes
on polydimethylsiloxan (PDMS) substrates by adjusting
the auxiliary gas in the PECVD processes [J]. J. Phys. D:
Appl. Phys., 2020, 53(44): 445301.
[6] Tagra S, Liu Y, Zhao L L, et al. Effect of driving
frequency on electron heating in capacitively coupled RF
argon glow discharges at low pressure [J]. Chin. Phys. B.,
2017, 26(11): 115201.
[7] Yasunori O, Masaya T, Julian S. Spatial structure of
radio-frequency capacitive discharge plasma with
ring-shaped hollow electrode using Ar and O2 mixture
gases [J]. J. Phys. D: Appl. Phys., 2019, 52(35): 355202.
[8] Perret A, Chabert P, Jolly J, et al. Ion energy uniformity
in high-frequency capacitive discharges [J]. Applied
Physics Letters, 2005, 86(2): 021501.
[9] Zhao K, Liu Y X, Gao F, et al. Experimental
investigations of the plasma radial uniformity in single
and dual frequency capacitively coupled argon discharges
[J]. Physics of Plasmas, 2016, 23(12): 123512.
[10] Sharma S, Sirse N, Turner M M, et al. Influence of
excitation frequency on the metastable atoms and
electron energy distribution function in a capacitively
coupled argon discharge [J]. Physics of Plasmas, 2018,
25(6): 063501.
[11] Kawamura E, Lieberman M A, Lichtenberg A. Symmetry
breaking in high frequency, symmetric capacitively
coupled plasmas [J]. Physics of Plasmas, 2018, 25(9):
093517.
[12] Lock E H, Petrova Tz B, Petrov G M, et al. Electron
beam-generated Ar/N2 plasmas: The effect of nitrogen
addition on the brightest argon emission lines [J]. Physics
of Plasmas, 2016, 23(4): 043518.
[13] Yuan Q H, Ren P, Liu S S, et al. The optical emission
spectroscopy of nitrogen plasma driven by the 94.92
MHz/13.56 MHz dual-frequency [J]. Physics Letters A.,
2020, 384(12): 126367.
[14] Kawamura E, Lieberman M A, Lichtenberg A J, et al.
Particle-in-cell simulations of the alpha and gamma
modes in collisional nitrogen capacitive discharges [J].
Plasma Sources Sci. Technol., 2021, 30(3): 035001.
[15] Wilczek S, Schulze J, Brinkmann R P Z, et al. Electron
dynamics in low pressure capacitively coupled radio
frequency discharges [J]. J. Appl. Phys., 2020, 127(18):
181101.
[16] Sharma S, Sirse N, Kuley A, et al. Electric field
nonlinearity in very high frequency capacitive discharges
at constant electron plasma frequency [J]. Plasma
Sources Sci. Technol., 2020, 29(4): 045003.
[17] Wang Y, Chen J, Wang Y, et al. The influence of oxygen
ratio on the plasma parameters of argon RF inductively
coupled discharge [J]. Vacuum, 2018, 149: 291.
[18] Anjum Z, Younus M, Rehman N U. Evolution of plasma
parameters in capacitively coupled He–O2/Ar mixture
plasma generated at low pressure using 13.56MHz
generator [J]. Physica Scripta, 2020, 95(4): 045403.
[19] Heijden H, Mullen J, Baier J, et al. Radiative transfer of a
molecular S2B-X spectrum using semiclassical and
quantum-mechanical radiation coefficients [J]. J. Phys. B:
At. Mol. Opt. Phys., 2002, 35(17): 3633.
[20] Sarikaya C K, Rafatov I, A A. Kudryavtsev. Particle in
cell/Monte Carlo collision analysis of the problem of
identification of impurities in the gas by the plasma
electron spectroscopy method [J]. Phys. Plasmas, 2016,
23(6): 063524.
[21] Wang H Y, Jiang W, Sun P, et al. On the energy
conservation electrostatic particle-in-cell/Monte Carlo
simulation: Benchmark and application to the radio
frequency discharges [J]. Chin. Phys. B., 2014, 23(3):
035204.
[22] Georgieva V, Bogaerts A, Gijbels R. Particle-incell/Monte Carlo simulation of a capacitively coupled
radio frequency Ar/CF4 discharge: Effect of gas
composition [J]. Journal of Applied Physics, 2003, 93(5):
2369.
[23] Georgieva V, Bogaerts A. Negative ion behavior in
single- and dual-frequency plasma etching reactors:
Particle-in-cell/Monte Carlo collision study [J]. Physical
Review E., 2006, 73(3): 36402.
[24] Ralchenko Y. NIST Atomic spectra database (ver. 4.1.0),
[W]. http://physics. nist. gov/asd.
[25] 齐雪莲. 会切场约束 ICP 增强非平衡磁控溅射放电及
应用研究 [D]. 大连: 大连理工大学, 2008.
[26] Liu Y X, Zhang Q Z, Jiang W, et al. Collisionless bounce
resonance heating in dual-frequency capacitively coupled
plasmas [J]. Physical Review Letters, 2011, 107(5):
055002.
[27] Ahn S K, You S J, Chang H Y. Driving frequency effect
on the electron energy distribution function in capacitive
discharge under constant discharge power condition [J].
Applied Physics Letters, 2006, 89(16): 161506.
[28] Bora B, Bhuyan H, Favre M, et al. Measurements of
plasma parameters in capacitively coupled radio
frequency plasma from discharge characteristics: Correlation with optical emission spectroscopy [J]. Current Applied Physics, 2013, 13(7): 1448.
|