[1] Feng K M, Wang X Y, Feng Y J, et al. Current progress of Chinese HCCB TBM program [J]. Fusion Engineering and Design, 2016, s109‒111: 729‒735.
[2] Wang X Y, Feng K M, Chen Y J, et al. Current design and R&D progress of the Chinese helium cooled ceramic breeder test blanket system [J]. Nucl. Fusion, 2019, 59:076019.
[3] Lin S, Cheng X M, Huang K, et al. Preliminary design of primary heat transfer system for CFETR water-cooled ceramic breeder blanket [J]. Fusion Engineering and Design, 2019, 140: 27–32.
[4] Gong B P, Feng Y J, Liao H B, et al. Discrete element modeling of pebble bed packing structures for HCCB TBM [J]. Fusion Engineering and Design, 2017, 121:256–264.
[5] 巩保平, 冯勇进, 刘洋, 等. HCSB-TBM 包层 Li4SiO4球床堆积结构的数值模拟 [J]. 核聚变与等离子体物理, 2017, 37(2): 173‒180.
[6] Desu R K, Moorthy A, Annabattula R K. DEM simulation of packing mono-sized pebbles into prismatic containers through different filling strategies [J]. Fusion Engineering and Design, 2018, 127: 259‒266.
[7] Dai W, Reimann J, Hanaor D, et al. Modes of wall induced granular crystallisation in vibrational packing [J].Granular Matter, 2019, 21: 26.
[8] 汪卫华, 程德胜, 冯开明, 等. 中国 HCCB-TBM 氚增殖球床热工水力学特性数值模拟 [J]. 核聚变与等离子体物理, 2014, 34(3): 200–206.
[9] 周冰, 冯勇进, 王晓宇, 等. 实验包层氚增殖区提氚气体换热研究 [J]. 核聚变与等离子体物理, 2018, 38(3):339‒343.
[10] 宋娟, 郭海兵, 黄洪文. 增殖剂球床载气体流动特性[J]. 强激光与粒子束, 2015, 27(1): 229–233.
[11] 张浩, 李正宏, 郭海兵, 等. 随机填充增殖剂球床内载气流动特性数值模拟 [J]. 强激光与粒子束, 2015,27(9): 277–280.
[12] Zhang H, Guo H B, Huang H W, et al. Numerical analysis of bypass flow in ceramic pebble beds [J].Journal of Fusion Energy, 2016, 35: 385–389.
[13] Chen Y H, Chen L, Liu S L, et al. Flow characteristics analysis of purge gas in unitary pebble beds by CFD simulation coupled with DEM geometry model for fusion blanket [J]. Fusion Engineering and Design, 2017, 114:84–90.
[14] 陈有华, 陈磊, 刘松林. CFETR 水冷包层两元混合增殖球床流动特性研究 [J]. 核聚变与等离子体物理,2017, 37(4): 452‒456.
[15] Wu Z X, Wu Y W, Tang S M, et al. DEM-CFD simulation of helium flow characteristics in randomly packed bed for fusion reactors [J]. Nucl. Energy, 2018,109: 29–37.
[16] Bu S S, Yang J, Zhou M, et al. On contact point modifications for forced convective heat transfer analysis in a structured packed bed of spheres [J]. Nuclear Engineering and Design, 2014, 270: 21‒33.
[17] 郭子萱, 孙中宁, 张楠. 球形燃料颗粒点接触处理方法研究 [J]. 核动力工程, 2017, 38(5): 164‒168.
[18] Kececioglu I, Jiang Y. Flow Through porous media of packed spheres saturated with water [J]. Journal of Fluids Engineering, 1994, 116(1): 164‒170.
[19] Ergun S. Fluid flow through packed columns [J].Chemical Engineering progress, 1952, 48(2): 89‒94.
[20] Eisfeld B, chnitzlein K S. The influence of confining walls on the pressure drop in packed beds [J]. Chemical Engineering Science, 2001, 56(14): 4321‒4329.
[21] Jian Yang, Qiuwang Wang, Min Zeng, et al.Computational study of forced convective heat transfer in structured packed beds with spherical or ellipsoidal particles [J]. Chemical Engineering Science, 2009, 65(2):726‒738.
[22] Jian Yang, Jing Wang, Shanshan Bu, et al. Experimental analysis of forced convective heat transfer in novel structured packed beds of particles [J]. Chemical Engineering Science, 2012, 71: 126‒137.
|