[1] Gurijanov E P, Harsha P T. AJAX: new directions in hypersonic technology [R]. AIAA 96-4609, 1996.
[2] Chase R L, Boyd D R, Czysz D P, et al. An AJAX technology advanced SSTO design concept [R]. AIAA 98-5527, 1998.
[3] Bityurin V A, Lineberry J T, Litchford R J, et al. Thermodynamic analysis of the AJAX propulsion concept (invited) [R]. AIAA 2000-0445, 2000.
[4] Kuranov A L, Kuchinsky V V, Sheikin E G. Scramjet with MHD control under "Ajax" concept: requirements for MHD systems [R]. AIAA 2001-2881, 2001.
[5] KURANOV A L, SHEIKIN E G. Magnetohydrodynamic control on hypersonic aircraft under Ajax concept [J]. Journal of Spacecraft and Rockets, 2003, 40(2):174-182.
[6] Kuranov A, Korabelnikov A. Hypersonic technologies of atmospheric cruise flight under AJAX concept [R]. AIAA 2008-2524, 2008.
[7] Sheikin E G, Kuranov A L. Scramjet with MHD bypass under “Ajax” concept [R]. AIAA 2004-1192, 2004.
[8] 居滋象, 吕友昌, 荆伯弘. 开环磁流体发电 [M]. 北京: 北京工业大学出版社, 1998.
[9] 李益文, 李应红, 张百灵, 等. 基于激波风洞的超声速磁流体动力技术实验系统 [J]. 航空学报, 2011, 32(6): 1015-1024.
[10] 苏长兵. 高超声速磁流体流动控制技术原理研究 [D]. 西安: 空军工程大学, 2010 .
[11] 吕浩宇, 李椿萱, 董海涛. 三维超声速磁流体发生器的流动特性 [J]. 中国科学G辑, 2009, 39(3): 435-445 .
[12] 郑小梅. 高超声速飞行器磁流体技术数值模拟研究 [D]. 北京: 北京航空航天大学, 2010.
[13] Alderman B, Howard P, Shneider M, et al. Thermionic power conversion for scramjets and reentry vehicles using nanosecond voltage pulses [R]. AIAA 2008-4098, 2008.
[14] Opaits D F, Neretti G, Likhanskii A V, et al. Experimental investigation of DBD plasma actuators driven by repetitive high voltage nanosecond pulses with DC or low-frequency sinusoidal bias [R]. AIAA 2007-4532, 2007.
[15] Zhukov V P, Kindisheva S V, Kirpichnikov A A, et al. Plasma production for MHD power generation by nanosecond discharge [R]. AIAA 2006-1370, 2006.
[16] Miles R B. Flow control by energy addition into high-speed air [R]. AIAA 2000-2324, 2000.
[17] Macheret S O, Shneider M N, Miles R B. Electron beam generated plasmas in hypersonic MHD channels [R]. AIAA 99-3635, 1999.
[18] Macheret S O, Shneider M N, Miles R B. Magnetohydrodynamic and electrohydrodynamic control of hypersonic flows of weakly ionized plasmas [J]. AIAA Journal, 2004, 42(7):1378-1387.
[19] Macheret S O, Shneider M N, Miles R B. Modeling of air plasma generation by repetitive high-voltage nanosecond pulses [J]. IEEE Transactions on Plasma Science, 2002, 30(3): 1301-1314.
[20] Nishihara M, Jiang N, Rich J W, et al. Low-temperature supersonic boundary layer control using repetitively pulsed MHD forcing [J]. Physics of Fluids, 2005, 17(10): 106102.
[21] Nishihara M, Rich J W, Lempert W R, et al. Low-temperature M=3 flow deceleration by Lorentz force [J]. Physics of Fluids, 2006, 18(8): 086101.
[22] Keisuke U, Sergey G, Fiodar P, et al. Experimental study of a fast ionization wave discharge at high pulse repetition rates [R]. AIAA 2008-1104, 2008.
[23] LI Yinghong, WU Yun, ZHOU Min, et al. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation [J]. Experiments in Fluids, 2009, DOI 10.1007/s00348-009-0787-2.
[24] WU Y, LI Y H, JIA M, et al. Influence of operating pressure on surface dielectric barrier discharge plasma aerodynamic actuation characteristics [J]. Applied Physics Letters, 2008, 93: 031503.
[25] LI Y H, WU Y, JIA M, et al. Optical emission spectroscopy investigation of a surface dielectric barrier discharge plasma aerodynamic actuator [J]. Chinese Physics Letters, 2008, 25(11): 4068-4071.
[26] Murray C, Zaidi S H, Carraro M R, et al. Magneto- hydrodynamic power generation using externally ionized, cold, supersonic air as working fluid [J]. AIAA, 2006, 44(1): 119-127.
|