[1] ABDOU M, RIVA M, YING A, et al. Physics and
technology considerations for the deuterium-tritium fuel cycle and conditions
for Tritium Fuel Self sufficiency [J]. Nuclear Fusion, 2021. 61: 013001.
[2] YANNICK N H, SILVANO T, ALESSIA S, et al. Permeator simulations for the EU-Demo fuel cycle [J].
Fusion Science and Technology, 2020, 76: 232-237.
[3] ZENG Q, SHI W, WANG X D, et al. Tritium Transport analysis for tokamak exhaust processing
system of tritium plant [J]. Fusion Engineering and Design, 2020, 159:
111955.
[4] 魏世平. 中国聚变工程实验堆氚工厂内燃料循环与氚输运模拟研究 [D]. 合肥: 中国科学技术大学, 2021.
[5] GOUGE M,
HOULBERG W, ATTENBERGER S, et al. Fueling of iter-scale fusion plasmas [J]. Fusion Technology,
1998, 34: 435-440.
[6] GOUGE M, HOULBERG W, ATTENBERGER S, et al. Fuel source isotopic tailoring and its impact on
international thermonuclear experimental reactor design, operation, and safety [J]. Fusion Technology, 1995, 28: 1644-1650.
[7] 潘磊. CFETR氚循环模型与氚自持研究 [D]. 合肥: 中国科学技术大学, 2017.
[8] DAY C, BUTLER B, GIEGERICH T, et al. A smart
three-loop fuel cycle architecture for DEMO [J]. Fusion Engineering and Design,
2019, 146: 2462.
[9] DAY C, GIEGERICH T. The
direct internal recycling concept to simplify the fuel cycle of a fusion power
plant [J]. Fusion Engineering and Design, 2013, 88(6-8): 616.
[10] 彭述明, 王和义. 氚化学与工艺学 [M]. 北京: 国防工业出版社, 2015.
[11] PAN L, CHEN H, ZENG Q. Tritium transport
analysis of HCPB blanket for CFETR [J]. Fusion Engineering and Design, 2016,
113(Dec.): 82-86.
[12] GLUGLA M, DÖRR L, LÄSSER R,
et al. Recovery of tritium from different sources by the ITER tokamak exhaust
processing system [J]. Fusion Engineering and Design. 2002, 61: 569-574.
[13] WILLMS, S. Status of
Tritium Processing for ITER [C]. UCLA: Fusion Nuclear Science and Technology
Meeting, 2008.
[14] Perevezentsev A, Bell A,
Hemmerich J, et al. Operational experience with the jet impurity processing system
during and after DTE1 [J]. Fusion Engineering and Design, 1999, 47: 355-360.
|