[1] Wan Y X, Li J G, Liu Y, et al. Overview of the present
progress and activities on the CFETR [J]. Nucl. Fusion,
2017, 57(10): 102009.
[2] Wan B, Ding S, Qian J, et al. Physics design of CFETR:
determination of the device engineering parameters [J].
IEEE Trans. Plasma Sci., 2014, 42: 495–502.
[3] Neilson G H, Federici G, Li J, et al. Summary of the
International Workshop on Magnetic Fusion Energy
(MFE) Roadmapping in the ITER Era; 7–10 September
2011, Princeton, NJ, USA [J]. Nucl. Fusion, 2012, 52(4):
047001.
[4] Zohm H, Angioni C, Fable E, et al. On the physics
guidelines for a tokamak DEMO [J]. Nucl. Fusion, 2013,
53(7): 073019.
[5] Chan V S, Costley A E, Wan B N, et al. Evaluation of
CFETR as a fusion nuclear science facility using multiple
system codes [J]. Nucl. Fusion, 2015, 55(2): 023017.
[6] Liu L, Kessel C, Chan V, et al. The time-dependent
simulation of CFETR baseline steady-state scenarios [J].
Nucl. Fusion, 2018, 58(9): 096009.
[7] Yang W, Li G, Gong X, et al. Stability analysis of Alfvén
eigenmodes in China Fusion Engineering Test Reactor
fully non-inductive and hybrid mode scenarios [J].
Plasma Sci. Technol., 2021, 23: 045103.
[8] Fasoli A, Gormenzano C, Berk H L, et al. Chapter 5:
Physics of energetic ions [J]. Nucl. Fusion, 2007, 47:
S264.
[9] Vlad G, Briguglio S, Fogaccia G, et al. Alfvénic
instabilities driven by fusion generated alpha particles in
ITER scenarios [J]. Nucl. Fusion, 2006, 46: 1.
[10] Chen L. Theory of magnetohydrodynamic instabilities
excited by energetic particles in tokamaks [J]. Phys.
Plasmas, 1994, 1(5): 1519.
[11] Fu G Y, Park W. Nonlinear hybrid simulation of the
toroidicity-induced Alfvén eigenmode [J]. Physical
Review Letters, 1995, 74(9): 1594–1596.
[12] Breizman B N, Sharapov S E. Major minority: energetic
particles in fusion plasmas [J]. Plasma Physics and
Controlled Fusion, 2011, 53(5): 054001.
[13] Yang W, Li G, Hu Y, et al. Linear stability of toroidal
Alfvén eigenmodes in the Chinese Fusion Engineering
Test Reactor [J]. Fusion Engineering and Design, 2017,
114: 118–126.
[14] White R B, Fredrickson E, Darrow D, et al. Toroidal
Alfvén eigenmode-induced ripple trapping [J]. Physics of
Plasmas, 1995, 2(8): 2871–2873.
[15] Pace D C, Lanctot M J, Jackson G L, et al. Controlling
fusion yield in tokamaks with spin polarized fuel, and
feasibility studies on the DIII-D tokamak [J]. Journal of
Fusion Energy, 2016, 35(1): 54–62.
[16] Estrada-Mila C, Candy J, Waltz R E. Turbulent transport
of alpha particles in reactor plasmas [J]. Physics of
Plasmas, 2006, 13: 112303.
[17] Pfeiffer W W, Davidson R H, Miller R L, et al.
ONETWO: a computer code for modeling plasma
transport in tokamaks [R]. General Atomics Report:
GA-A16178, 1980.
[18] Kessel C E, Giruzzi G, Sips A C C, et al. Simulation of
the hybrid and steady state advanced operating modes in
ITER [J]. Nucl. Fusion, 2007, 47(9): 1274–1284.
[19] Jian X, Chen J, Chan V S, et al. Optimization of CFETR
baseline performance by controlling rotation shear and
pedestal collisionality through integrated modeling [J].
Nucl. Fusion, 2017, 57(4): 046012.
[20] Pankin A, Mccune D, Andre R, et al. The tokamak Monte
Carlo fast ion module NUBEAM in the national transport
code collaboration library [J]. Computer Physics
Communications, 2004, 159(3): 157–184.
[21] Chan V S, Stambaugh R D, Garofalo A M, et al. Physics
basis of a fusion development facility utilizing the
tokamak approach [J]. Fusion Science & Technology,
2010, 57(1): 66–93.
[22] Snyder P B, Groebner R J, Leonard A W, et al.
Development and validation of a predictive model for the
pedestal height [J]. Physics of Plasmas, 2009, 16(5):
2137.
[23] Snyder P B, Aiba N, Beurskens M, et al. Pedestal
stability comparison and ITER pedestal prediction [J].
Nucl. Fusion, 2009, 49: 085035.
[24] Greenwald M. Density limits in toroidal plasmas [J].
Plasma Physics and Controlled Fusion, 2002, 44(8): R27.
[25] Murakami M, Park J M, G. Giruzzi G, et al. Integrated
modelling of steady-state scenarios and heating and
current drive mixes for ITER [J]. Nucl. Fusion, 2011, 51:
103006.
[26] Wu M, Li G, Chen J, et al. Transport simulation of EAST
long-pulse H-mode discharge with integrated modeling
[J]. Nucl. Fusion, 2018, 58: 046001.
[27] Staebler G M, Kinsey J E, Waltz R E. Gyro-Landau fluid
equations for trapped and passing particles [J]. Physics of
Plasmas, 2005, 12(10): 3019.
[28] Staebler G M, Waltz R E, Candy J, et al. New paradigm
for suppression of gyrokinetic turbulence by velocity
shear [J]. Physical Review Letters, 2013, 110(5): 055003.
[29] Fausser C, Puma A L, Gabriel F, et al. Tokamak D-T
neutron source models for different plasma physics
confinement modes [J]. Fusion Engineering and Design, 2012, 87(5–6): 787–792.
[30] Bosch H S, Hale G M. Improved formulas for fusion
cross-sections and thermal reactivities [J]. Nucl. Fusion,
1992, 32(4): 611.
|