[1] Kusumandari K, Saraswati T E, Wulandari S W, et al.
Atmospheric air plasma corona discharge for dye
degradation of Indonesian batik wastewater [J]. Indian
Journal of Physics, 2021, 96(4): 1001.
[2] Pekarek S. DC corona discharge ozone production enhanced by magnetic field [J]. European Physical
Journal D, 2010, 56(Nov.): 91.
[3] Ma T P, Chen J Y, Liu J Q, et al. Promotion of toluene
degradation in negative DC corona discharge by
magnetic field [J]. Journal of Physics D: Applied Physics,
2018, 51(42): 425203.
[4] Anto D, Staack D, Fridman A, et al. Atmospheric
pressure DC corona discharges: operating regimes and
potential applications [J]. Plasma Sources Science and
Technology, 2009, 18(3): 035016.
[5] Ichikawa N, Okumura K, Takahashi Y. Characteristics of
negative corona discharge using CWT with and without
airflow [J]. IEEE Transactions on Dielectrics and
Electrical Insulation, 2005, 12(1): 34.
[6] Kang Y Q, Wu G N, Zhang X Q, et al. Polarity effect of
flowing air discharge [J]. IEEE Access, 2018, 6(Oct.):
61819.
[7] Jiang N, Lu X L, Peng B F. Physical and chemical
properties of a magnetic-assisted DC superimposed
nanosecond-pulsed streamer discharge [J]. Journal of
Physics D: Applied Physics, 2021, 54(24): 245203.
[8] Berendt A, Budnarowska M, Mizeraczyk J. DC negative
corona discharge characteristics in air flowing
transversely and longitudinally through a needle-plate
electrode gap [J]. Journal of Electrostatics, 2018,
92(Apr.): 24.
[9] Moreau E, Leger L, Touchard G. Effect of a DC
surface-corona discharge on a flat plate boundary layer
for air flow velocity up to 25 m/s [J]. Journal of
Electrostatics, 2006, 64(3-4): 215.
[10] Ren C S, Ma T C, Wang D Z, et al. A study of crossgas-flow to stabilize an atmospheric pressure glow
plasma in a multi-pin-to-multi-cupped-plane negative
corona discharge [J]. Journal of Electrostatics, 2006,
64(1): 23.
[11] Elabbas K. Experimental study of magnetic field effect
on DC corona discharge in low vacuum [J]. Journal of the
Institution of Engineers, 2014, 95(3):189.
[12] Guo H, Xu Y, Wang Y, et al. Experimental study on the
effects of airflow, magnetic field and combination of
airflow with magnetic field on nanosecond pulsed
dielectric barrier discharge in atmospheric air [J]. Physics
of Plasmas, 2020, 27(2): 023519.
[13] 周德胜. 高速流动及强磁场条件下大气压放电特性研
究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.
[14] Jaworek A, Krupa A. Corona discharge from a multipoint
electrode in flowing air [J]. Journal of Electrostatics,
1996, 38(3): 187.
[15] 齐冰, 任春生, 马腾才等. 多针电晕增强大气压辉光
放电稳定性研究 [J]. 物理学报, 2006, 55(1): 331.
[16] Nunes Y, Wemans A, Gordo P R, et al. The influence of
magnetic confinement in DC abnormal-glow discharges
[J]. Vacuum, 2007, 81(11‒12): 1498.
[17] 米俊锋, 詹小平, 杜胜男, 等. 磁场对电晕放电极间区
域的影响 [J]. 辽宁石油化工大学学报, 2013, 33(3):
88.
[18] 米俊锋. 磁场、雾化共同作用下电晕放电机理及对微
小颗粒荷电与捕集的研究 [D]. 长春: 东北师范大学,
2010.
[19] 林山杉, 盛连喜, 李明非, 等. 磁增强电晕放电及其对
颗粒荷电的研究 [J]. 电工技术学报, 2004, 19(9): 42.
[20] Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis
from oxygen in dielectric barrier discharges [J]. Journal
of Physics D: Applied Physics, 1987, 20(11): 1421.
[21] Koelsgchatz U, Eliasson B, Hirth M. Ozone generation
from oxygen and air: discharge physics and reaction
mechanisms [J]. Ozone Science and Engineering, 1988,
10(4): 367.
[22] Pekarek S, Rosenkranz J. Ozone and Nitrogen oxides
generation in gas flow enhanced hollow needle to plate
discharge in air [J]. Ozone Science and Engineering,
2002, 24(3): 221.
|