[1] Rath J K. Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications[J]. Solar Energy Materials and Solar Cells, 2003, 76(4): 431-487.
[2] Beaucarne G, Bourdais S, Slaoui A, et al. Thin-film polycrystalline Si solar cells on foreign substrates: film formation at intermediate temperatures (700~1300℃)[J]. Applied Physics A, 2004, 79: 469-480.
[3] Gu J D, Chen P L. Direct fabrication of large-grain polycrystalline silicon thin films by RF-biased RF-PECVD at low temperature[J]. Thin Solid Films, 2006, 498: 2-8.
[4] Kuraseko H, Nobuaki O, Hisashi K, et al. Inverted aluminum-induced layer exchange method for thin film polycrystalline silicon aolar cells on insulating substrates[J]. Applied Physics Express, 2009, 2 (1): 015501.
[5] Catchpole K R, McCann M J, Weber K J, et al. A review of thin-film crystalline silicon for solar cell applications. part 2: foreign substrates[J]. Solar Energy Materials and Solar Cells, 2001, 68: 173-215.
[6] Ramalingam S, Maroudas D, Aydil E S. Atomistic simulation study of the interactions of SiH3 radicals with silicon surface[J]. Journal of Applied Physics, 1999, 86(5): 2872-2883.
[7] Rath J K, Franken R H J, Gordijn A, et al. Growth mechanism of microcrystalline silicon at high pressure conditions[J]. Journal of Non-Crystalline Solids, 2004, 338-340: 56-60.
[8] Vetterl O, Finger F, Carius R, et al. Intrinsic micro- crystalline silicon: a new material for photovoltaics[J]. Solar Energy Materials and Solar Cells, 2000, 62(1-2): 97-108.
[9] Mai Y, Klein S, Carius R, et al. Microcrystalline silicon solar cells deposited at high rates[J]. Journal of Applied Physics, 2005, 97: 114913.
[10] Akihisa Matsuda. Growth mechanism of microcrystalline silicon obtained from reactive plasmas[J]. Thin Solid Films, 1999, 337: 1-6. |