[1] 郝嘉琨. 聚变堆材料[M]. 北京: 化学工业出版社, 2006.
[2] Conn R W, Doerner R P, Won J. Beryllium as the plasma-facing material in fusion energy systems- experiments, evaluation, and comparison with alternative materials[J]. Fusion Engineering and Design, 1997, 37(4): 481-513.
[3] Roth J, Eckstein W, Guseva M. Erosion of Be as plasma-facing material[J]. Fusion Engineering and Design, 1997, 37: 465–480.
[4] Hirooka Y, Won J, Boivin R, et al. Effect of impurities on the erosion behavior of beryllium under steady-state deuterium plasma bombardment [J]. J. Nucl. Mater., 1996, 228: 148-153.
[5] Parker R, Janeschitz G, Pacher H D. Plasma-wall interactions in ITER[J]. J. Nucl. Mater., 1997, 241-243: 1-26.
[6] Goldstrass P, Eckstein W, Linsmeier C. Erosion of beryllium and deposition of carbon and oxygen due to bombardment with C+ and CO+ ions[J]. J. Nucl. Mater., 1999, 269: 581-586.
[7] Linsmeier C, Luthin J, Goldstrass P. Mixed material formation and erosion[J]. J. Nucl. Mater., 2001, 290: 25-32.
[8] Braams C M, Stott P E. Nuclear fusion: half a century of magnetic confinement fusion research[J]. Plasma Physics and Controlled Fusion, 2002, 44(8): 1716.
[9] Bj¨orkas C, Juslin N, Timko H, et al. Interatomic potentials for the Be-C-H system[J]. J. Phys.: Condens. Matter., 2009, 21: 1-16.
[10] Verlet L. Computer experiments on classical fluids[J]. Phys. Rev., 1967, 159(1): 98-103.
[11] Berendsen H J C, Postma J P M, Gunsteren W F V, et al. Molecular dynamics with coupling to an externl bath[J]. J. Chem. Phys., 1984, 81: 3684.
[12] Cameron D B G, Abrams F. Atomistic simulation of silicon bombardment by energetic CF3+ product dis- tributions and energies[J]. Thin Solid Films, 2000, 374: 2.
[13] 赵化侨. 等离子体化学与工艺[M]. 合肥: 中国科学技术大学出版社. 1993.
[14] Helmer B A. Ph. D. thesis[D]. Berkeley: University of California. 1998.