[1] Pekker L. Longitudinal distribution of plasma density in the low-pressure glow discharge with transverse magnetic field [J].
Plasma Sources Sci. Techn., 1995, 4: 31−35.
[2] Birdsall C K, Langdon A B. Plasma physics computer simulation [M]. New York: McGraw-Hill, 1985.
[3] Nanbu K, Segawa S, Kondo S. Self-consistent particle simulation of three-dimension dc magnetron discharge [J]. Vacuum,
1996, 47: 1013−1016.
[4] Nanbu K, Kondo S. Analysis of three-dimensional dc magnetron discharge by the partial-in-cell/Monte Carlo method [J].
Jpn. J. Appl. Phys. Part 1, 1997,36 (7B): 4808−4813.
[5] Kondo S, Nanbu K. A self-consistent numerical analysis of a planar dc magnetron discharge by the particle- in-cell/Monte
Carlo method [J]. J. Phys. D: Appl. Phys., 1999, 32: 1142−1152.
[6] Kondo S, Nanbu K. Axisymmetrical particle-in-cell/ Monte Carlo simulation of narrow gap planar magnetron plasmas. I.
Direct current-driven discharge [J]. J. Vac. Sci. Techn. A, 2001, 19(3): 830−837.
[7] Shon C H, Lee J K, Lee H J, et al. Velocity distributions in magnetron sputter [J]. IEEE transactions on plasma science, 1998,
26(6): 1635−1644.
[8] Shon C H, Park J S, Kang B K, et al. Kinetic and steady-state properties of magnetron sputter with three- dimensional
magnetic field [J]. Jpn. J. Appl. Phys., 1999, 38: 4440−4449.
[9] Kolev I, Bogaerts A. Numerical models of the planar magnetron glow discharges [J]. Contrib. Plasma Phys., 2004, 44(7−8):
582−588.
[10] Kolev I, Bogaerts A, Gijbels R. Influence of electron recapture by the cathode upon the discharge character- istics in dc
planar magnetrons [J]. Phys. Rev. E, 2005, 72: 056402−1−11.
[11] Kolev I, Bogaerts A, Gijbels R. PIC-MCC numerical simulation of a dc planar magnetron [J]. Plasma Process Polym, 2006,
3: 127−134.
[12] Shidoji E, Ohtake H, Nakano N, et al. Two-dimension self-consistent simulation of a dc magnetron discharge [J]. Jpn. J. Apl.
Phys., 1999, 38:2131−2136.
[13] Shidoji E, Ness K, Makabe T. Influence of gas pressure and magnetic field upon dc magnetron discharge [J]. Vacuum, 2001,
60(3): 299−306.
[14] Costin C, Marques L, Popa G., et al. Two-dimensional fluid approach to the dc magnetron discharge[J]. Plasma Sources
Sci.Techn., 2005, 14: 168−176.
[15] Zhao H Y, Mu Z X. Particle-in-cell/Monte Carlo collision simulation of planar dc magnetron sputtering [J]. Chinese Physics
B, 2008, 17(4): 1475−1479.
[16] 邱清泉, 励庆孚, 苏静静, 等. 平面直流磁控溅射放电等离子体模拟研究进展 [J]. 真空科学与技术学报, 2007, 27(6):
493−499.
[17] Surendra M, Graves D B, Jellum G M. Self-consistent model of a direct-current glow discharge: treatment of fast electrons
[J]. Phys. Rev. A, 1990, 41: 1112−1125.
[18] Vahedi V, DiPeso G., Birdsall, C K, et al. Capacitive RF discharge modeled by particle-in-cell Monte Carlo simulation. I: analysis of numerical techniques [J]. Plasma Sources Sci. Techn.,1993, 2: 261−272.
[19] Kuwahara K, Fujiyama H. Application of the Child- Langmuir law to magnetron discharge plasmas [J]. IEEE Transactions on Plasma Science, 1994, 22 (4): 442−448.
[20] Rossnagel S M, Kaufman H R. Charge transport in magnetrons [J]. J. Vac. Sci. Techn. A, 1987, 5(4): 2276 −2279. |