[1] BVD Schaaf, DSGelles, S Jitsukawa, et al. Progress and critical issues of reduced activation ferritic/martensitic steel development[J]. J. Nucl. Mater., 2000, 283-287: 52-59.
[2] Baluc N, Gelles D S, Jitsukawa s, et al. Status of reduced activation ferritic/martensitic steel development[J]. J. Nucl. Mater., 2007, s367-370(26): 33-41.
[3] 黄群英, 李春京, 李艳芬, 等. 中国低活化马氏体钢CLAM研究进展[J]. 核科学与工程, 2007, 27(1): 42.
[4] Jitsukawa S, Tamura M, BVD Schaaf, et al. Development of an extensive database of mechanical and physical properties for reduced activation martensitic steel F82H[J]. J. Nucl. Mater., 2002, 307-311: 179-186.
[5] Hiorse T, Ando K, Ando M, et al. Joining technologies of reduced activation ferritic/martensitic steel for blanket fabrication[J]. Fusion. Eng. Des., 2006, 81: 645-651.
[6] Sawai T, Shiba K, Hishinuma A. Microstructure of welded and thermal-aged low activation steel F82H IEA heat[J]. J. Nucl. Mater., 2000, 283-287: 657-661.
[7] Alamo A, Castaing A, Fonters A, et al. Effects of thermal aging on the mechanical behavior of F82H weldments[J]. J. Nucl. Mater., 2000, 283-287: 1192-1195.
[8] Cardella A, Rigal E, Bedel L, et al. The manufacturing technologies of the European breeding blankets[J]. J. Nucl. Mater., 2004, 329-333: 133-140.
[9] Michael Rieth. Diffusion weld study for test blanket module fabrication[J]. Fusion Eng. Des., 2009, 84(7): 1602-1605.
[10] Duck Young Ku, Seungjin Oh, Mu-Young Ahn, et al. TIG and hip joining of reduced activation ferrite/martensitic steel for the Korean ITER-TBM[J]. J. Nucl. Mater., 2011, 417: 67-71.
[11] 李春京, 黄群英, 吴宜灿, 等. 中国低活化马氏体钢CLAM热等静压扩散焊接初步研究[J]. 核科学与工程, 2007, 27(1): 56-58. |