[1] Feng K. Difference schemes for Hamiltonian formalism and symplectic geometry[J]. J. Comput. Math., 1986, 4: 279.
[2] Feng K, Qing M Z. Hamiltonian algorithms for Hamil- tonian systems and a comparative numerical study[J]. Comput. Phys. Comm, 1991, 65: 173.
[3] Feng K. Formal power series and numerical algorithms for dynamical systems[J]. Math. Appl., 1991, 6: 17.
[4] Feng K, Wang D L. Symplectic difference schemes for Hamiltonian systems in general symplectic structure[J]. J. Comput. Math., 1991, 9: 86.
[5] Feng K, Shang Z J. Volume-preserving algorithms for source-free dynamical systems[J]. Numer. Math., 1995, 71: 451.
[6] Feng K. The calculus of generating functions and the formal energy for Hamiltonian algorithms[J]. J. Comput. Math., 1998, 16: 481.
[7] Feng K. The step-transition operators for multi-step methods of ODE's[J]. J. Comput. Math., 1998, 16: 193.
[8] 刘世兴, 刘畅, 常鹏, 等. 辛几何算法在特殊Chaplygin系统中的应用研究[J]. 物理学报, 2011, 60(3): 034501.
[9] 刘学深, 丁培柱. 量子系统保结构计算新进展[J]. 物理学进展, 2004, 24(1): 47-89.
[10] Bernstein I B. Geometric optics in space- and time- varying plasmas[J]. Phys. Fluids, 1975, 18: 320.
[11] Smirnov A P, Harvey R W. Calculations of the current drive in DⅢ-D with the GENRAY ray tracing code[J]. Bull. Am. Phys. Soc, 1995, 40: 35.
[12] Yang C, Bonoli P T, Wright J C, et al. Modelling of the EAST lower-hybrid current drive experiment using GENRAY/CQL3D and TORLH/CQL3D[J]. Plasma Phys. Contr. Fusion, 2014, 56: 125003.
[13] Esterkin A R, Piliya A D. Fast ray tracing code for LHCD simulations[J]. Nucl. Fusion, 1996, 36: 1501.
[14] McVey B D. A ray-tracing analysis of fast-wave heating of tokamaks[J]. Nucl. Fusion, 1979, 19: 461.
[15] 冯康, 秦孟兆. 哈密顿系统的辛几何算法[M]. 杭州: 浙江科学技术出版社, 2003. 189-194. |