[1] Dale J D, Checkel M, Smy P. Application of high energy ignition systems to engines [J]. Prog. Energy Combus., 1997, 23(5): 379−98.
[2] Kogelschatz U. Atmospheric-pressure plasma technology [J]. Plasma Phys. Contr. Fusion, 2004, 46: B63-B75.
[3] Li X S, Lin C K, Shi Ch, et al. Stable kilohertz spark discharges for high-efficiency conversion of methane to hydrogen and acetylene [J]. J.Phys. D: Appl. Phys., 2008, 41(17): 175203.
[4] Tabrizi N S, Ullmann M, Vons V A, et al. Generation of nanoparticles by spark discharge [J]. J. Nano. Res., 2009, 11(2): 315−32.
[5] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996.
[6] Loeb L B. Statistical factors in spark discharge mechanisms [J]. Rev. Mod. Phys., 1948, 20(1): 151−60.
[7] Meek J. A theory of spark discharge [J]. Phys. Rev., 1940, 57(8): 722−8.
[8] Chen J, Davidson J H. Electron density and energy distributions in the positive DC corona: interpretation for corona-enhanced chemical reactions [J]. Plasma Chemistry and Plasma Processing, 2002, 22(2): 199−224.
[9] Borra J P. Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration[J]. J. Phys. D: Appl. Phys., 2006, 39(2): R19.
[10] Oliveira C, Jr J L R, Souza-Corrêa J A. Optical and electrical diagnostics of a spark-plug discharge in air[J]. J. Phys. D: Appl. Phys., 2012, 45(25): 255201.
[11] 陈熙. 热等离子体传热与流动[M]. 北京: 科学出版社, 2009.
[12] Meyer J. The development of the discharge plasma in a hydrogen spark at small pd values[J]. J. Phys. D: Appl. Phys., 1969, 2(2): 221.
[13] Akram M, Lundgren E. The evolution of spark discharges in gases: I. Macroscopic models[J]. J. Phys. D: Appl. Phys., 1996, 29(8): 2129.
[14] Bye C A, Scheeline A. Saha-Boltzmann statistics for determination of electron temperature and density in spark discharges using an Echelle/CCD system [J]. Appl. spectrosc., 1993, 47(12): 2022−30.
[15] Pai D Z, Stancu G D, Lacoste D A. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the glow regime[J]. Plasma Sources Sci. T., 2009, 18(4): 045030.
[16] Kado S, Sekine Y, Nozaki T.Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion[J]. Catal. Today, 2004, 89(1): 47−55.
[17] Descoeudres A, Hollenstein C, Wälder G, et al. Time-resolved imaging and spatially-resolved spectroscopy of electrical discharge machining plasma [J]. J. Phys. D: Appl. Phys., 2005, 38(22): 4066.
[18] Aleksandrov N, Bazelyan E, Gorunov A Y, et al. A non-thermal mechanism of spark breakdown in Ar[J]. J. Phys. D: Appl. Phys., 1999, 32(20): 2636.
[19] http://www.bosch-trading.com.cn/web/product/product_ spark_yijin.jsp[z].
[20] Bellenoue M, Labuda S, RuttunB, et al. Spark plug and corona abilities to ignite stoichiometric and lean methane/air mixtures[J]. Combust. Sci. Tech., 2007, 179(3): 477−96.
[21] Rohwein G J. An efficient, power-enhanced ignition system[J]. Plasma Sci. IEEE T., 1997, 25(2): 306−10.
[22] Ceper B A. Experimental investigation of the effect of spark plug gap on a hydrogen fueled SI engine[J]. Int. J. Hydrogen Energ., 2012, 37(22):17310−17320.
[23] Sekine Y, Furukawa N, Matsukata M. Coke-free dry reforming of model diesel fuel by a pulsed spark plasma at low temperatures using anexhaust gas recirculation (EGR) system[J]. J. Phys. D: Appl. Phys., 2011, 44(27): 274004.
[24] Aubry O, Met C, Khacef A. On the use of a non-thermal plasma reactor for ethanol steam reforming[J]. Chem. Eng. J., 2005, 106(3): 241−7.
[25] Seyed M N, Jalili A H, Jenab M H, et al. DC-Pulsed Plasma for Dry Reforming of Methane to Synthesis Gas[J]. Plasma Chem. Plasma P., 2010, 30(3): 333−47.
[26] Li X S, Zhu B, Shi Ch, et al. Carbon dioxide reforming of methane in kilohertz spark-discharge plasma at atmospheric pressure [J]. AIChE J., 2011, 57(10): 2854−2860.
[27] Zhu B, Li X S, Shi Ch, et al. Pressurization effect on dry reforming of biogas in kilohertz spark-discharge plasma[J]. Int. J. Hydrogen Energ., 2012, 37(6): 4945−54.
[28] Zhu B, Li X S, Liu J L, et al. Optimized mixed reforming of biogas with O2 addition in spark-discharge plasma[J]. Int. J. Hydrogen Energ., 2012,37:16916−24.
[29] Moshrefi M M, Rashidi F, Bozorgzadeh H R, et al. Methane conversion to hydrogen and carbon black by DC-spark discharge[J]. Plasma Chemistry and Plasma Processing, 2012, 32(6): 1157−68.
[30] Moshrefi M M, Rashidi F, Bozorgzadeh H R, et al. Dry reforming of methane by DC spark discharge with a rotating electrode[J]. Plasma Chemistry and Plasma Processing, 2013, 33(2): 453−66.
[31] Mohd A N, Solomon D G, Fuad B M. A review on current research trends in electrical discharge machining (EDM)[J]. Int. J. Mach. Tools Manu., 2007, 47(7): 1214−28.
[32] Ho K, Newman S. State of the art electrical discharge machining (EDM) [J]. Int. J. Mach. Tools Manu., 2003, 43(13): 1287−300.
[33] Singh S, Maheshwari S, Pandey P. Some investigations into the electric discharge machining of hardened tool steel using different electrode materials
[J]. J. Mater. Process. Tech., 2004, 149(1): 272−7.
[34] Meuller B O, Messing M E, Engberg D L, et al. Review of spark discharge generators for production of nanoparticle aerosols[J]. Aerosol Sci. Tech., 2012, 46(11): 1256−70.
[35] Bau S, Witschger O, Gensdarmes F, et al. Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator [J]. J. Nano. Res., 2010, 12(6): 1989−95.
[36] Tabrizi N, Xu Q, Van D P N,et al. Synthesis of mixed metallic nanoparticles by spark discharge [J]. J. Nano. Res., 2009, 11(5): 1209−18. |