[1] Boufendi L, Plain A, BlondeauJ Ph, et al. Measurements of particle size kinetics from nanometer to micrometer scale in a low-pressure argon-silane radio-frequency discharge[J]. Appl. Phys. Lett., 1992, 60: 169−171.
[2] Carlile R N, Geha S. Physical properties of contamination particle traps in a process plasma[J]. J. Appl.Phys., 1993, 73: 4785−4793.
[3] Ma J X, Liu J Y, Yu M Y. Fluid theory of the boundary of a dusty plasma[J]. Phys. Rev. E, 1997, 55: 4627−4633.
[4] 刘金远, 陈龙, 王丰, 等. 聚变等离子体中尘埃杂质的带电和运动特性及温度变化研究[J]. 物理学报, 2010, 59(12): 8692−8700.
[5] Barkan A, Angelo N D, Merlino R L. Charging of dust grains in a plasma[J]. Phys. Rev. Lett., 1994, 73: 3093 −3096.
[6] Vishnyakov Vladimir I. Charging of dust in thermal collisional plasmas[J]. Phys. Rev. E, 2012, 85: 026402.
[7] 段萍, 刘金远, 宫野, 等. 等离子体鞘层中尘埃粒子的分布特性[J]. 物理学报, 2007, 56(12) : 7090−7099.
[8] 吴静, 刘国, 姚列明, 等. 等离子体鞘层附近尘埃颗粒特性的数值模拟[J]. 物理学报, 2012, 61(7): 075205.
[9] Liu J Y, Ma J X. Effects of various forces on the distribution of particles at the boundary of a dusty plasma[J]. Phys. Plasmas, 1997, 4: 2798−2804.
[10] Baishya S K, Das G C, Chutia J, et al. Electrostatic sheath at the boundary of a magnetized dusty plasma [J].Phys. Plasmas, 1999, 6(9): 3678−3684.
[11] Liu J Y, Zhang Q, Zou X, et al. The characteristic of dust in a magnetic plasma sheath [J]. Vaccum, 2004, 73: 687−690.
[12] Wang Z X, Wang W, Liu Y, et al. Dust charging in the sheath of an electronegative plasma [J]. Chin. Phys. Lett., 2004, 21: 697.
[13] Ma J X, Yu M Y. Electrostatic sheath at the boundary of a dusty plasma [J]. Phys. Plasmas, 1995, 2(4): 1343−1348.
[14] Barkan A, Merlino R L, Angelo D. Laboratory observation of the dust-acoustic wave mode [J]. Phys.Plasmas, 1995, 2: 3563.
[15] Foroutan G, Mehdipour H, Zahed H. Simulation study of the magnetized sheath of a dusty plasma [J]. Phys. Plasmas, 2009, 16: 103703.
[16] 赵晓云, 武山, 张开银. 两种正离子对磁化等离子体鞘层中尘埃颗粒的影响[J]. 真空科学与技术学报,2013, 33(4): 346−350.
[17] Zobnin A V, Nefedov A P, Sinel’shchikov V A, et al. On the charge of dust particles in a low-pressure gas discharge plasma [J]. J. Exp.Theor. Phys., 2000, 91: 483−487.
[18] Semenov I L, Zagorodny A G, Krivtsun I V. On the effect of ion-neutral collisions on dust grain screening in a low-pressure gas discharge plasma [J]. Phys. Plasmas, 2012, 19: 043703.
[19] Masoudi S F, Jafari G R, Shorakaee H A. Effect of dust-neutral collisions on the dust characteristics in a magnetized plasma sheath [J]. Vacuum, 2009, 83(7): 1031−1035.
[20] Khrapak S A, Morfill G E. Ionization enhanced ion collection by a small floating grain in plasmas[J]. Phys. Plasmas, 2012, 19: 024510.
[21] Foroutan G, Akhoundi A. Investigation of the sheath formation in a dusty plasma containing energetic electrons and nano-size dust grains [J]. Phys. Plasmas, 2012, 19: 103505.
[22] Foroutan G, Akhoundi A. Numerical study of an electrostatic plasma sheath containing two species of charged dust particles [J]. J. Appl. Phys., 2012, 112:073301.
[23] Foroutan G, Akhoundi A. Simulation study of the sheath region of a processing plasma with two-temperature electrons and charged nanoparticles [J]. Phys. Lett. A, 2012, 376: 2244−2251.
[24] Yang X, Han J F, Liu C B, et al. The effects of the ionization, the recombination, and the collision of the ions [J]. Phys. Plasmas, 2013, 20: 023704.
[25] 刘金远, 段萍, 鄂鹏. 计算物理学[M]. 北京: 科学出版社, 2012. 96−110. |