[1] Temmerman De, Hirai T, Pitts R A. The influence of
plasma-surface interaction on the performance of
tungsten at the ITER divertor vertical targets [J]. Plasma
Phys. Contr. Fusion, 2018, 60(4): 044018.
[2] Maier H, Luthin J, Balden M, et al. Properties of tungsten
coatings deposited onto fine grain graphite by different
methods [J]. Surf. Coat. Technol., 2001, 142−144(12):
733−737.
[3] Eckstein W, Verbeek H, Biersack J P. Computer
simulation of the backscattering and implantation of
hydrogen and helium [J]. J. Appl. Phys., 1980, 51(2):
1194−1200.
[4] Neu R, Bobkov V, Dux R, et al. Final steps to an all
tungsten divertor tokamak [J]. J. Nucl. Mater., 2007,
363(1): 52−59.
[5] Hasegawa A, Fukuda M, Nogami S, et al. Neutron
irradiation effects on tungsten materials [J]. Fusion. Eng.
Des., 2014, 89(7−9): 1568−1572.
[6] Hasegawa A, Fukuda M, Yabuuchi K, et al. Neutron
irradiation effects on the microstructural development of
tungsten and tungsten alloys [J]. J. Nucl. Mater., 2016,
471: 175−183.
[7] Klimenkov M, Jantsch U, Rieth M, et al. Effect of
neutron irradiation on the microstructure of tungsten [J].
Nucl. Mater. Energy, 2016, 9: 480−483.
[8] Hammond K D. Helium, hydrogen, and fuzz in
plasma-facing materials [J]. Mater. Res. Express, 2017,
4(10): 104002.
[9] Zenobia S J, Kulcinski G L. Formation and retention of
surface pores in helium-implanted nano-grain tungsten
for fusion reactor first-wall materials and divertor plates
[J]. Phys. Scr., 2009, T138: 014049.
[10] Miyamoto M, Nishijima D, Baldwin M J, et al.
Microscopic damage of tungsten exposed to
deuterium-helium mixture plasma in PISCES and its
impacts on retention property [J]. J. Nucl. Mater., 2011,
415(1-supp-S): S657−S660.
[11] Baldwin M J, Lynch T C, Doerner R P, et al.
Nanostructure formation on tungsten exposed to
low-pressure rf helium plasmas: A study of ion energy
threshold and early stage growth [J]. J. Nucl. Mater., 2011, 415(1-supp-S): S104−S107.
[12] Kajita S, Yoshida N, Yoshihara R, et al. TEM observation
of the growth process of helium nanobubbles on tungsten:
Nanostructure formation mechanism [J]. J. Nucl. Mater.,
2011, 418: 152−158.
[13] Wright G M, Brunner D, Baldwin M J, et al. Comparison
of tungsten nano-tendrils grown in Alcator C-Mod and
linear plasma devices [J]. J. Nucl. Mater., 2013, 438:
S84−S89.
[14] Baldwin M J, Doerner R P. Helium induced nanoscopic
morphology on tungsten under fusion relevant plasma
conditions [J]. Nucl. Fusion, 2008, 48(3): 035001.
[15] Baldwin M J, Doerner R P. Formation of helium induced
nanostructure ‘fuzz’ on various tungsten grades [J]. J.
Nucl. Mater., 2010, 404(3): 165−173.
[16] Kajita S, Sakaguchi W, Ohno N, et al. Formation process
of tungsten nanostructure by the exposure to helium
plasma under fusion relevant plasma conditions [J]. Nucl.
Fusion, 2009, 49(19): 095005.
[17] Fan H Y, Zhang Y, Liu D P, et al. Tensile stress-driven
cracking of W fuzz over W crystal under fusionrelevant
He ion irradiations [J]. Nucl. Fusion, 2020, 60(4):
046011.
[18] Bi Z H, Liu D P, Zhang Y, et al. The evolution of He
nanobubbles in tungsten under fusion-relevant He ion
irradiation conditions [J]. Nucl. Fusion, 2019, 59(81):
086025.
[19] Kajita S, Yagi T, Kobayashi K, et al. Measurement of
heat diffusion across fuzzy tungsten layer [J]. Results.
Phys., 2016, 6: 877−878.
[20] Wang K, Doerner R P, Baldwin M J, et al. Morphologies
of tungsten nanotendrils grown under helium exposure
[J]. Sci. Rep., 2017, 7(1): 42315.
[21] Nishijima D, Baldwin M J, Doerner R P, et al. Sputtering
properties of tungsten ‘fuzzy’ surfaces [J]. J. Nucl. Mater.,
2011,415(1-supp-S): S96−S99.
[22] 吴良,范红玉,倪维元, 等. 氦离子辐照下钨纳米丝的
自保护行为 [J]. 材料研究学报 , 2019, 33(11):
809−814.
[23] Ni W Y, Niu C J, Zhang Y, et al. Modeling W fuzz growth
over polycrystalline W due to He ion irradiations at an
elevated temperature [J]. J. Nucl. Mater., 2021, 550:
152917.
|