[1] Raffray A R, Nygren R, Whyte D G, et al. High heat flux
components—readiness to proceed from near term fusion
systems to power plants [J]. Fusion Engineering and
Design, 2010, 85(1): 93.
[2] Liang G, Mudawar I. Review of channel flow boiling
enhancement by surface modification, and instability
suppression schemes [J]. International Journal of Heat
and Mass Transfer, 2020, 146(Jan.): 118864.1.
[3] Ezato K, Suzuki S, Sato K, et al. Critical heat flux test on
saw-toothed fin duct under one-sided heating conditions
[J]. Fusion Engineering & Design, 2001, 56(Oct.): 291.
[4] Ezato K, Suzuki S, Seki Y, et al. Development of
tungsten divertor components for ITER in Japan [J].
Fusion Engineering & Design, 2018, 136(PT.A): 683.
[5] Liu P, Ding W L, Ji J D, et al. Heat transfer and
thermo-mechanical analyses of W/CuCrZr monoblock
divertor in subcooled flow boiling [J]. Fusion
Engineering and Design, 2019, 144(Jul.): 46.
[6] Akhavan-Behabadi M A, Kumar R, Jamali M.
Investigation on heat transfer and pressure drop during
swirl flow boiling of R-134a in a horizontal tube [J].
International Journal of Heat & Mass Transfer, 2009,
52(7−8): 1918.
[7] Akhavan-Behabadi M A, Kumar R, Mohammadpour A,
et al. Effect of twisted tape insert on heat transfer and
pressure drop in horizontal evaporators for the flow of
R-134a [J]. International Journal of Refrigeration, 2008,
32(5): 922.
[8] Kim D E, Yu D I, Jerng D W, et al. Review of boiling
heat transfer enhancement on micro/nanostructured
surfaces [J]. Experimental Thermal and Fluid Science,
2015, 66: 173.
[9] Kwark S M, Moreno G, Kumar R, et al. Nanocoating
characterization in pool boiling heat transfer of pure
water [J]. International Journal of Heat and Mass
Transfer, 2010, 53(21): 4579.
[10] Yao Z, Lu Y W, Kandlikar S G. Fabrication of nanowires
on orthogonal surfaces of microchannels and their effect
on pool boiling [J]. Journal of Micromechanics and
Microengineering, 2012, 22(11): 751.
[11] McHale J P, Garimella S V. Nucleate boiling from
smooth and rough surfaces–Part 1: Fabrication and
characterization of an optically transparent heater-sensor
substrate with controlled surface roughness [J].
Experimental Thermal and Fluid Science, 2013, 44: 456.
[12] 黄生洪, 乐吴生. 一种金属表面形成微纳米多层次复
合结构的加工工艺 [P]. 中国专利 : CN201710
580981.5, 2017-7-17.
[13] 王琳琳. 多层次复合微纳表面结构超汽化强化换热实验研究 [D]. 合肥: 中国科学技术大学, 2019.
[14] Liu P, Peng X B, Song Y T, et al. Subcooled water flow
boiling heat transfer in screw cooling tubes under
one-sided heating conditions [J]. Applied Thermal
Engineering, 2017, 113: 621.
[15] Lim D K, Park Y, Kim H, et al. CFD-based shape
optimization on cross-section of monoblock fusion
divertor cooling channel for minimizing local heat flux
[J]. Fusion Engineering & Design, 2018, 136(PT.B):
1100.
[16] 韩乐. 偏滤器水冷钨铜模块传热与热应力问题研究
[D]. 南京: 南京航空航天大学, 2015.
[17] Mukesh Kumar, Avinash Moharana, Nayak A K, et al.
CFD simulation of boiling flows inside fuel rod bundle
of a natural circulation BWR during SBO [J]. Nuclear
Engineering and Design, 2018, 338(Nov.): 300.
[18] Shahid H, Altamush S M. Numerical and experimental
analysis of natural convection flow boiling of water in
internally heated vertical annulus [J]. Numerical Heat
Transfer Applications, 2018, 73(2): 1.
[19] Kurul N, Podowski MZ. On the modeling of
multidimensional effects in boiling channel [A].
Proceedings of the 27th National Heat Transfer
Conference [C]. Minneapolis, USA, 1991. 301.
[20] Valle V H D, Kenning D B. Subcooled flow boiling at
high heat flux [J]. International journal of heat and mass
transfer, 1985, 28(10): 1907.
[21] Zhou P, Huang R, Huang S, et al. Experimental
investigation on bubble contact diameter and bubble
departure diameter in horizontal subcooled flow boiling
[J]. International Journal of Heat and Mass Transfer,
2019, 149: 119105.
[22] Du J, Zhao C, Bo H. Investigation of bubble departure
diameter in horizontal and vertical subcooled flow
boiling [J]. International Journal of Heat and Mass
Transfer, 2018, 127(PT.A): 796.
[23] Sugrue R, Buongiorno J. A modified force-balance model
for prediction of bubble departure diameter in subcooled
flow boiling [J]. Nuclear Engineering and Design, 2016,
305: 717.
[24] Tolubinski V I,Kostanchuk D M. Vapor bubbles growth
rate and heat transfer intensity at subcooled water boiling
[A]. 4th International Heat Transfer Conference [C].
Paris, France: HEFAT, 1970.
[25] Unal H C. Maximum bubble diameter, maximum bubble
growth time and bubble growth rate during subcooled
nucleate flow boiling of water up to 17.7 MN/m2
[J].
International Journal of Heat and Mass Transfer, 1976,
19(6): 643.
[26] Fritz W. The calculation of the maximum volume of
steam bladders [J]. Physikalische Zeitschrift, 1935, 36:
379−384.
[27] Kocamustafaogullari G, Ishii M. Interfacial area and
nucleation site density in boiling systems [J].
International Journal of Heat and Mass Transfer, 1983,
26(9): 1377.
[28] Cole R. A photographic study of pool boiling in the
region of the critical heat flux [J]. AIChE Journal, 1960,
6(4): 533.
[29] Lemmert M,Chawla J M. Influence of flow velocity on
surface boiling heat transfer coefficient in heat transfer in
boiling [R]. New York, USA: Academic Press and
Hemisphere, 1977. 237.
[30] Koncar B, Kljenak I, Mavko B. Modelling of local
two-phase flow parameters in upward subcooled flow
boiling at low pressure [J]. International Journal of Heat
& Mass Transfer, 2004, 47(6/7): 1499.
[31] 刘晋, 周展如, 黄生洪, 等. 气泡特征对矩形管内水过
冷流动沸腾传热数值模拟的影响 [R]. 广州: 2020 年
中国工程热物理学会传热传质会议, 2020. 203553.
[32] Sugrue R, Buongiorno J, McKrell T. An experimental
study of bubble departure diameter in subcooled flow
boiling including the effects of orientation angle,
subcooling, mass flux, heat flux, and pressure [J]. Nucl.
Eng. Des. 2014, 279(Nov.): 182.
[33] Du J, Zhao C, Bo H. Investigation of bubble departure
diameter in horizontal and vertical subcooled flow
boiling [J]. International Journal of Heat and Mass
Transfer, 2018, 127(PT.A): 796.
[34] Mali C R, Vinod V, Patwardhan A W. Comparison of
phase interaction models for high pressure subcooled
boiling flow in long vertical tubes [J]. Nuclear
Engineering and Design, 2017, 324(Dec.): 337.
[35] Mazzone G, Brolatti G, D'Agata E, et al. Design of
plasma facing components for the ITER feat divertor [J].
Fusion Engineering & Design, 2002, 61(Nov.): 153.
[36] 薛奎, 陈俊凌, 朱大焕. ITER 偏滤器 W/Cu 单体模块热
-结构模拟与分析 [J]. 核聚变与等离子体物理, 2013,
33(4): 354.
[37] 周展如. 高热流密度下过冷流动沸腾传热及其应用研
究 [D]. 南京: 南京航空航天大学, 2018.
[38] 田露, 王润, 方贤德, 等.偏滤器钨铜单体水冷模块热
特性数值模拟研究 [J]. 工程热物理学报, 2016, 37(11):
2372.
[39] Ibbott C, Antipenkov A, Chiocchio S, et al. Design issues
and cost implications of RTO/RC-ITER divertor [J].
Fusion Engineering & Design, 2000, 49: 217.
[40] 王健, 宋云涛, 郭后扬, 等. EAST 偏滤器钨铜单体水
冷模块参数优化 [J]. 核聚变与等离子体物理, 2013,
33(1): 72.
[41] Li C J, Zhu D H, Ding R, et al. Characterization on the
melting failure of CuCrZr cooling tube of W/Cu
monoblocks during plasma operations in EAST [J].
Nuclear Materials and Energy, 2020, 25.
|