[1] Chang Z, Callen J D, Fredrickson E D, et al. Observation
of nonlinear neoclassical pressure-gradient-driven tearing
modes in TFTR [J]. Phys. Rev. Lett., 1995, 74(23): 4663.
[2] Zohm H, Gantenbein G, Gude A, et al. The physics of
neoclassical tearing modes and their stabilization by
ECCD in ASDEX upgrade [J]. Nucl. Fusion, 2001, 41(2):
197.
[3] Günter S, Gude A, Maraschek M, et al. Highconfinement
regime at high βN values due to a changed
behavior of the neoclassical tearing modes [J]. Phys. Rev.
Lett., 2001, 87(27): 275001.
[4] La Haye R J, Lao L L, Strait E J, et al. High beta tokamak
operation in DIII-D limited at low density/collisionality
by resistive tearing modes [J]. Nucl. Fusion, 1997, 37(3):
397.
[5] Günter S, Gude A, Maraschek M, et al. Influence of
neoclassical tearing modes on energy confinement [J].
Plasma Phys. Contr. F., 1999, 41(6): 767.
[6] Park W, Fredrickson E D, Janos A, et al. High-β
disruption in tokamaks [J]. Phys. Rev. Lett., 1995, 75(9):
1763.
[7] Günter S, Giruzzi G, Gude A, et al. MHD modes in
regular and reversed shear scenarios and possibilities for
their control through current drive [J]. Plasma Phys.
Contr. F., 1999, 41(12B): b231.
[8] Isayama A, Kamada Y, Ide S, et al. Complete
stabilization of a tearing mode in steady state high-βp
H-mode discharges by the first harmonic electron
cyclotron heating/current drive on JT-60U [J]. Plasma
Phys. Contr. F., 2000, 42(12): L37.
[9] La Haye R J, Günter S, Humphreys D A, et al. Control of
neoclassical tearing modes in DIII–D [J]. Physics of
Plasmas, 2002, 9(5): 2051.
[10] Wang X G, Zhang X D, Wu B, et al. Numerical study on
the stabilization of neoclassical tearing modes by electron
cyclotron current drive [J]. Physics of Plasmas, 2015,
22(2): 022512.
[11] Wang X J, Yu Q Q, Zhang X D, et al. Comparison
between numerical and analytical results on the required
RF current for stabilizing neoclassical tearing modes [J].
Plasma Phys. Contr. F., 2018, 60(4): 045004.
[12] Yang Zh, Wu B, Xie Y L, et al. Suppression of
neoclassical tearing mode instability at the initial stage by
electron cyclotron current drive [J]. AIP Advances, 2021,
11(3): 035212.
[13] Yu Q, Günter S, Giruzzi G, et al. Modeling of the
stabilization of neoclassical tearing modes by localized
radio frequency current drive [J]. Physics of Plasmas,
2000, 7(1): 312.
[14] De Lazzari D, Westerhof E. On the merits of heating and
current drive for tearing mode stabilization [J]. Nucl.
Fusion, 2009, 49(7): 075002.
[15] Hegna C C, Callen J D. On the stabilization of
neoclassical magnetohydrodynamic tearing modes using
localized current drive or heating [J]. Physics of Plasmas,
1997, 4(8): 2940.
[16] Sauter O. On the contribution of local current density to
neoclassical tearing mode stabilization [J]. Physics of
Plasmas, 2004, 11(10): 4808.
[17] Giruzzi G, Zabiégo M, Gianakon T A, et al. Dynamical
modelling of tearing mode stabilization by RF current drive [J]. Nucl. Fusion, 1999, 39(1): 107.
[18] Yu Q, Zhang X D, Günter S. Numerical studies on the
stabilization of neoclassical tearing modes by radio
frequency current drive [J]. Physics of Plasmas, 2004,
11(5): 1960.
|