[1] Wang Y, Xiao B, Liu L, et al. System identification for EAST plasmashape and position control [J]. Fusion Engineering and Design, 2018, 29: 140−146.
[2] Shafranov V D. Plasma equilibrium in a magnetic field [J]. Reviews of Plasma Physics, 1966, 2: 103.
[3] Sharma A S, Limebeer D J N, Jaimoukha I M, et al. Modeling and control of TCV [J]. IEEE Transactions on Control Systems Technology, 2005, 13(3): 356−369.
[4] Coutlis A, Bandyopadhyay I, Lister J B, et al. Measurement of the open loop plasma equilibrium response in TCV [J]. Nucl. Fusion, 1999, 39(5): 663−683.
[5] Lister J B, Sharma A, Limebeer D J N, et al. Plasma equilibrium response modelling and validation on JT-60U [J]. Nucl. Fusion, 2002, 42(6): 708−724.
[6] Vitelli R, Boncagni L, Mecocci F, et al. An anti-windup-based solution for the low current nonlinearity compensation on the FTU horizontal position controller [C]. IEEE Conference on Decision and Control. IEEE, 2010.
[7] Rasouli H, Rasouli C, Koohi A. Identification and control of plasma vertical position using neural network in Damavand tokamak [J]. Rev. Sci. Instrum., 2013, 84(2): 013503−201.
[8] Hochreiter S, Schmidhuber J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735−1780.
[9] Cho K, Van Merrienboer B, Bahdanau D, et al. On the properties of neural machine translation: Encoder-Decoder approaches [J]. Computer Science, 2014, 1: 103−111.
[10] 赵申剑, 黎彧君, 符天凡, 等译. 深度学习 [M]. 北京: 人民邮电出版社, 2017. 13.
[11] Fu R, Zhang Z, Li L. Using LSTM and GRU neural network methods for traffic flow prediction [C]. 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE, 2016.
[12] Kim Ha Young, Won Chang Hyun. Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models [J]. Expert Systems with Applications, 2018, 103(1): 25−37.
[13] Dai J., Song H., Sheng G.. Prediction method for power transformer running state based on LSTM network [J]. High Voltage Engineering, 2018, 44(4): 1099−1106.
[14] Julian, Kates-Harbeck, Alexey, et al. Predicting disruptive instabilities in controlled fusion plasmas through deep learning [J]. Nature, 2019, 568: 526−531.
[15] Srivastavan, Hinton G, Krizhevskya, et al. Dropout: A simple way to prevent neural networks from overfitting [J]. Journal of Machine Learning Research, 2014, 15(1): 1929−1958.
[16] Willmottcj. On the validation of models [J]. Physical Geography, 1981, 2(55): 184−194.
[17] 李波, 宋显明, 李立, 等. HL-2A装置等离子体水平位移控制 [J]. 核聚变与等离子体物理, 2004, 24(4): 269−272.
[18] WANG Xueli. Serf-tuning PID control of electric hydraulic constant power speed regulation based on RBF neural network [J].Machine Tool and Hydraulics, 2016, 44(22): 115−117.
[19] 张绍德. 一类神经网络非线性系统模型参考自适应控制 [J]. 华中理工大学学报, 2000, 28(4): 77−79.
[20] 姜向龙, 程善美, 李叶松, 等. 神经网络模型参考自适应控制算法研究 [J]. 华中科技大学学报(自然科学版), 2003, 031(1): 4−6.
[21] Wang X, Xiang C, Najjaran H, et al. Robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft with actuator saturation [J]. Chinese Journal of Aeronautics, 2018, 6: 1298−1310.
[22] Chien Chiang-Ju, Sun King-Chuan, Wu A-Chen, et al. A robust MRAC using variable structure design for multivariable plants [J]. Automatica, 1996, 32(6): 833−848.
[23] 王雪丽.基于RBF神经网络电液恒功率调速自整定PID控制 [J].机床与液压, 2016, 44(22): 115−117.
[24] Hartman E J, Keeler J D, Kowalski J M. Layered neural networks with Gaussian hidden units as universal approximations [J]. Neural Computation, 1990, 2: 210−215.
[25] Park J, Sandberg I. Universal approximation using radial-basis-function networks [J]. Neural Computation, 2014, 3(2): 246−257.
[26] Kobayashi H, Ozawa R. Adaptive neural network control of tendon-driven mechanisms with elastic tendons [J]. Automatica, 2003, 39(9): 1509−1519.
|