[1] Plasma Theory and Simulation Group. Particle simulations of 1-D Vlasov problems [Z]. 2019.
[2] Lapenta G. Particle simulations of space weather [J]. Journal of Computational Physics. 2012, 231(3): 795− 821.
[3] 袁忠才, 时家明. PIC/MCC数值模拟四阳极直流辉光放电 [J]. 核聚变与等离子体物理, 2005, 25(4): 68−73.
[4] 况龙钰, 巫顺超, 江少恩, 等.金属靶背向超热电子运动特性的PIC模拟 [J].核聚变与等离子体物理, 2009, 29(1): 78−81.
[5] Lapenta G. Particle in cell methods with application to simulations in space weather [J]. Centrum Voor Plasma Astrofysica, 2010, doi: 10.1.1.471.420.
[6] 赵书霞, 张连珠. 氮气辉光放电等离子体过程的PIC/MCC模拟 [J]. 核聚变与等离子体物理, 2009, 29(1): 39−43.
[7] 张连珠, 孟秀兰, 田中涛, 等. N2空心阴极放电向微空心阴极放电转变的PIC/MC模拟 [J]. 核聚变与等离子体物理, 2010, 30(2): 131−137.
[8] Decyk V K, Singh T V. Adaptable particle-in-cell algorithms for graphical processing units [J]. Computer Physics Communications, 2011, 182(3): 641−648.
[9] 杨莹, 付东儒, 张连珠. N2射频放电带电粒子(e, N2+, N+)的PIC-MC模拟 [J]. 核聚变与等离子体物理, 2012, 32(3): 206−212.
[10] Decyk V K, Singh T V. Particle-in-cell algorithms for emerging computer architectures [J]. Computer Physics Communications, 2014, 185(3): 708−719.
[11] Berk H L, Roberts K V. Nonlinear evolution of a two-stream instability [J]. Phys. Rev. Lett., 1967, 19(6): 297−300.
[12] SANG Longlong, WU Mingyu, LU Quanming, et al. Electrostatic structure of the electron phase-space holes generated by the electron two-stream instability with a finite width [J]. Chin. J. Space Sci., 2017, 37(5): 517−523.
[13] Birdsall C K, Langdon A B. Plasma physics via computer simulation [M]. Adam Hilger, 1991.
[14] Hockney R W, Eastwood J W. Computer simulation using particles [M]. Crc Press, 1988.
[15] Dawson J M. Particle simulation of plasmas [J]. Reviews of Modern Physics, 1983, 55(2): 403.
[16] Omura Y, Matsumoto H. KEMPO1: Technical guide to one-dimensional electromagnetic particle code [J]. Computer Space Plasma Physics, Simulation Techniques and Software, Terra Scientific Pub., 1993: 21−65.
[17] Verboncoeur J P, Langdon A B, Gladd N T. An object-oriented electromagnetic PIC code [J]. Computer Physics Communications, 1995, 87(1): 199-211.
[18] Kourakis I, Shukla P K. Nonlinear Lagrangian theory of envelope electrostatic plasma waves in a two-electron- temperature plasma [J]. Physics of Plasmas, 2004, 11(9): 4506.
[19] Buti B, Yu M Y. Langmuir solitons in a two-temperature plasma [J]. Journal of Plasma Physics, 1981, 26(2): 309−316.
[20] Focia R J, Rose H A, Russell D A, et al. Observation of Stimulated Electron-Acoustic-Wave Scattering [J]. Phys. Rev. Lett., 2001, 87(15): 155001.
[21] Chakraborty D, Das K P. Existence and stability of solitary kinetic Alfvén, ion-acoustic and electron-acoustic waves in a two electron temperature plasma [J]. Physics of Plasmas, 2003, 10(6): 2236.
[22] Ou J, Xiang N, Gan C, et al. Effect of two-temperature electrons distribution on an electrostatic plasma sheath [J]. Physics of Plasmas, 2013, 20(6): 63502.
[23] Chen Z H, Yang X S, Chen X C, et al. Two-temperature- electron Zakharov equations for the dynamics of modulated collapse [J]. Physics of Plasmas, 2016, 23(5): 52303.
[24] Verboncoeur J P. Particle simulation of plasmas: review and advances [J]. Plasma Phys. Contr. Fusion, 2005, 47(5A): A231−A260.
[25] Omura Y. One-dimensional electromagnetic particle code: KEMPO1 [J]. Advanced Methods for Space Simulations, Terra Scientific Pub, Tokyo, 2007: 1-21.
[26] Lapenta G, Jiang W. Implicit temporal discretization and exact energy conservation for particle methods applied to the Poisson-Boltzmann equation [J]. Plasma, 2018, 1(2): 242−258.
[27] XIE Huasheng, XIAO Yong. PDRK: A general kinetic dispersion relation solver for magnetized plasma [J]. Plasma Science and Technology, 2016, 18(2): 97.
|