Welcome to Nuclear Fusion and Plasma Physics, Today is Share:

Nuclear Fusion and Plasma Physics ›› 2021, Vol. 41 ›› Issue (3): 207-214.DOI: 10.16568/j.0254-6086.202103003

• Plasma Physics • Previous Articles     Next Articles

Plasma radiation distribution tomography based on deconvolutional neural networks

WANG Zhao-hui, XIAO Jian-yuan, QIN Hong   

  1. (University of Science and Technology of China Department Physics, Hefei 230026)
  • Received:2020-02-15 Revised:2020-10-20 Online:2021-09-15 Published:2021-09-23

基于逆卷积神经网络的等离子体辐射分布 断层重建方法

王朝辉,肖建元*,秦  宏   

  1. (中国科学技术大学物理学院,合肥 230026)
  • 作者简介:王朝辉(1994‒),男,甘肃天水人,硕士,主要从事等离子体计算模拟及聚变数据处理研究。
  • 基金资助:
    国家自然科学基金(11775219,11575186,11805273);中国博士后科学基金资助项目(2017LH002)

Abstract: A deconvolutional neural network (deCNN) which allows to implement a pixel-wise emission distribution reconstruction is developed for plasma radiation distribution tomographic reconstruction. By adopting the structural similarity (SSIM) as the loss function, the method reveals better reconstruction accuracy in phantom data experiments. The simulated experiments results show that this method could still achieve an admissible reconstruction precision and is noise robustness when the line-integrated noise magnitude is 10%, 15% and 20%.

Key words: Plasma radiation distribution tomography, Deconvolutional neural networks, Line-integrated diagnostic system, Image reconstruction

摘要: 发展了一种基于逆卷积神经网络的图像级重建方法用于聚变等离子体辐射分布的断层反演。通过引 入结构相似度(SSIM)作为损失函数,该方法在模拟数据实验中表现出了较好的重建效果。模拟实验结果表明,在 弦积分信号噪声强度为10%、15%及20%时,该方法的重建结果依然具有良好的精确度和鲁棒性。

关键词: 等离子体辐射分布断层重建, 逆卷积神经网络, 弦积分诊断系统, 图像重建 

CLC Number: