[1] Sovinec C R, Schnack D D, Pankin A Y, et al. Nonlinear extended magnetohydrodynamics simulation using high-order finite elements [J]. Journal of Physics Conference Series, 2005, 16(1): 355−386.
[2] Breslau J, Ferraro N, Jardin S. Some properties of the M3D-C1 form of the three-dimensional magneto-hydrodynamics equations [J]. Phys. Plasmas, 2009, 16(9):092503.
[3] Park W, Belova E V. Plasma simulation studies using multilevel physics models [J]. Phys. Plasmas, 1999, 6(5):1796−1803.
[4] Brio M, Wu C C. An upwind differencing scheme for the equations of ideal magnetohydrodynamics [J]. Journal of Computational Physics, 1988, 75(2): 400−422.
[5] Ma J, Guo W, Yu Z. Simulating magnetohydrodynamic instabilities with conservative perturbed MHD model using discontinuous Galerkin method [J]. Commun.Comput. Phys., 2017, 21(5): 1429−1448.
[6] Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws [M]. Springer, 1997.
[7] Jiang R L, Fang C, Chen P F. A new MHD code with adaptive mesh refinement and parallelization for astrophysics [J]. Computer Physics Communications,2012, 183(8): 1617−1633.
[8] Wong U H, Aoki T, Wong H C. Efficient magnetohydrodynamic simulations on distributed multi-GPU systems using a novel GPU Direct-MPI hybrid approach [J]. Computer Physics Communications, 2014, 185(7): 1901−1913.
[9] Brackbill J U, Barnes D C. The effect of nonzero ∇⋅B on the numerical solution of the magnetohydrodynamic equations [J]. Journal of Computational Physics, 1980, 35(3): 426−430.
[10] Evans C R, Hawley J F. Simulation of magneto-hydrodynamic flows: a constrained transport method [J].Astrophysical Journal, 2007, 332(2): 659−677.
[11] Dedner A, Kemm F, KröNer D, et al. Hyperbolic divergence cleaning for the MHD equations [J]. Journal of Computational Physics, 2002, 175(2): 645−673.
[12] Mignone A, Tzeferacos P, Bodo G. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD [J]. Journal of Computational Physics, 2010, 229(17): 5896−5920.
[13] Fornberg, Bengt. Generation of finite difference formulas on arbitrarily spaced grids [J]. Mathematics of Computation, 1988, 51(184): 699−706.
[14] Lax P D. Systems of conservation laws [J]. Commun.Pure Appl. Math., 2010, 13(2): 217−237.
[15] Dahlburg R B, Karpen J T. Transition to turbulence in solar surges [J]. Astrophysical Journal, 1994, 434(2):766−772.
[16] Li X H, Zhang J, Yang S H, et al. Observing Kelvin-Helmholtz instability in solar blowout jet [J].Scientific Reports, 2018, 8(1): 8136.
[17] Keppens R, TóTH G, Westermann R H J, et al. Growth and saturation of the Kelvin-Helmholtz instability with parallel and antiparallel magnetic fields [J]. Journal of Plasma Physics, 1999, 61(1): 1−19.
[18] Miura A, Pritchett P L. Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma [J]. Journal of Geophysical Research, 1982,87(A9): 7431−7444.
[19] Wesson J. Finite resistivity instabilities of a sheet pinch[J]. Phys. Fluids, 2004, 6(2): 130−134.
[20] Del Zanna L, Landi S, Papini E, et al. The “ideal” tearing mode: theory and resistive MHD simulations [J]. Journal of Physics: Conference Series, 2016, 719(1): 12−16.
|