Welcome to Nuclear Fusion and Plasma Physics, Today is Share:

NUCLEAR FUSION AND PLASMA PHYSICS ›› 2010, Vol. 30 ›› Issue (3): 225-229.

• Plasma Physics • Previous Articles     Next Articles

Analysis of magnetized plasma photonic crystals on the basis of the faraday effect by finite-difference time-domain method

LIU Song, LIU Shao-bin   

  1. (1. Department of Physics, Nanchang University, Nanchang 330031; 2. College of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016)
  • Received:2009-12-01 Revised:2010-06-02 Online:2010-09-15 Published:2011-08-18

基于法拉第效应磁化等离子体光子晶体FDTD分析

刘崧, 刘少斌   

  1. (1. 南昌大学物理系,南昌 330031;2. 南京航空航天大学信息科学与技术学院,南京 210016)
  • 作者简介:刘崧(1968-),男,江西泰和人,副教授,博士,主要从事等离子体理论和计算电磁学研究。
  • 基金资助:

    国家自然科学基金资助项目(60971122);江西省自然科学基金资助项目(2009GZW0016)

Abstract: The photonic band gap (PBG) structures of plasma photonic crystals (PPCs) can be turned after being added an applied magnetic field. The PPCs consisting of an intrinsic plasma layers and other dielectric material layers stacked alternately, is taken as an example in studying photonic band gap structures and transmission spectra within the magnetic field using finite-difference time-domain (FDTD) algorithm. A perfectly matched layer absorbing boundary condition is employed to deal with the numerical non-reflection boundary in these simulations. Due to the Faraday effect, the dielectric constant of the plasma is modified differently in different frequency ranges. As a result, the PBG characteristics of the PPCs are turned correspondingly. Interestingly, the electromagnetic wave transmission below the plasma frequency can be realized.

Key words: Plasma photonic crystals, Photonic band gap, Faradayeffect, Finite-difference time-domain algorithm

摘要: 通过增加外磁场来调控等离子体光子晶体的光子带隙结构,采用时域有限差分算法分析了由本征层为磁化等离子体层和其他电介质材料层交替堆叠而成的磁化等离子体光子晶体的光子带隙结构,数值模拟中采用完全匹配层吸收边界条件以防止边界的反射。由于外磁场的法拉第磁光效应,使等离子体的介电常数随着外磁场的变化而改变。数值结果表明,等离子体光子晶体的带隙特性在一定的频率范围相应地得到调节,实现了频率低于等离子体频率的电磁波也能在等离子体中传播。

关键词: 等离子体光子晶体, 光子带隙, 法拉第效应, 时域有限差分算法

CLC Number: