[1] SPITZER L. The Stellarator Concept [J]. IEEE Transactions on
Plasma Science, 1981, 9(4): 130-141.
[2] 李漫, 王先驱, 苏祥, 等. 局部反磁剪切位形下高能量粒子模的线性不稳定性分析 [J]. 核聚变与等离子体物理, 2023, 43(4): 429-435.
[3] XU Y. A general comparison between tokamak and stellarator
plasmas [J]. Matter and Radiation at Extremes, 2016, 1(4): 192-200.
[4] 王富甲, 陈德鸿, 徐国盛, 等. 强磁场托卡马克环向场线圈应力缓解研究 [J]. 核聚变与等离子体物理, 2024, 44(1): 1-6.
[5] 吉海标, 马建国, 刘志宏, 等. 未来聚变堆真空室扇区现场高精度装配技术研究 [J]. 核聚变与等离子体物理, 2024, 44(1): 19-23.
[6] MERKEL P. Solution of stellarator boundary value problems
with external currents [J]. Nuclear Fusion, 1987, 27(5): 867.
[7] POMPHREY N, BERRY L, BOOZER A, et al. Innovations in compact
stellarator coil design [J]. Nuclear Fusion, 2001, 41(3): 339-347.
[8] LANDREMAN M. An improved current potential method for fast
computation of stellarator coil shapes [J]. Nuclear Fusion, 2017, 57(4): 046003.
[9] DREVLAK M. Automated optimization of stellarator coils [J].
Fusion Technology, 1998, 33(2): 106-117.
[10] STRICKLER D J, BERRY L A, HIRSHMAN S P. Designing coils for
compact stellarators [J]. Fusion Science and Technology, 2002, 41(2): 107-115.
[11] GATES D A, BOOZER A H, BROWN T, et al. Recent advances in
stellarator optimization [J]. Nuclear Fusion, 2017, 57(12): 126064.
[12] LIU H, ZHANG J, XU Y, et al. Effects of bootstrap current on
magnetic configuration in Chinese first quasi-axisymmetric stellarator [J].
Nuclear Fusion, 2023, 63(2): 026018.
[13] LIU H, SHIMIZU A, XU Y, et al. Configuration characteristics
of the Chinese First Quasi-axisymmetric Stellarator [J]. Nuclear Fusion, 2021,
61(1): 016014.
[14] ZARNSTORFF M C, BERRY L A, BROOKS A, et al. Physics of the
compact advanced stellarator NCSX [J]. Plasma Physics and Controlled Fusion,
2001, 43(12A): A237.
[15] NELSON B E, BERRY L A, BROOKS A B, et al. Design of the
national compact stellarator experiment (NCSX) [J]. Fusion Engineering and
Design, 2003, 66-68: 169-174.
[16] SHIMIZU A, OKAMURA S, ISOBE M, et al. Design of modular coils
for a quasi-axisymmetric stellarator with a flexible control of the magnetic
field configuration [J]. Fusion Engineering and Design, 2003, 65(1): 109-118.
[17] NEMOV V V, ISOBE M, KERNBICHLER W, et al. Effective ripple in
the CHS-qa configuration [J]. Plasma Physics and Controlled Fusion, 2003,
45(10): 1829.
[18] ZHU C, HUDSON S R, SONG Y, et al. New method to design
stellarator coils without the winding surface [J]. Nuclear Fusion, 2018, 58(1):
016008.
[19] ZHU C, HUDSON S R, SONG Y, et al. Designing stellarator coils
by a modified Newton method using focus [J]. Plasma Physics and Controlled
Fusion, 2018, 60(6): 065008.
[20] LI Y, LIU H, XU Y, et al. Optimization of finite-sized
modular coils for advanced stellarators [J]. Plasma Physics and Controlled Fusion,
2020, 62(12): 125004.
[21] KINOSHITA S, SHIMIZU A, OKAMURA S, et al. Engineering design
of the Chinese First Quasi-Axisymmetric Stellarator (CFQS) [J]. Plasma and
Fusion Research, 2019, 14: 3405097.
[22] SHIMIZU A, LIU H, ISOBE M, et al. Configuration property of
the Chinese First Quasi-Axisymmetric Stellarator [J]. Plasma and Fusion
Research, 2018, 13: 3403123.
[23] GIORLA D, ROCCELLA R, LO FRANO R, et al. EM zooming procedure
in ANSYS Maxwell 3D [J]. Fusion Engineering and Design, 2018, 132: 67-72.
[24] JIN C, CHEN H. Preliminary electromagnetic analysis of helium
cooled solid blanket for CFETR by Maxwell [J]. Fusion Engineering and Design,
2016, 112: 468-474.
[25] LIU H, SHIMIZU A, ISOBE M,
et al. Magnetic configuration and modular coil design for the Chinese First
Quasi-Axisymmetric Stellarator [J]. Plasma and Fusion Research, 2018, 13:
3405067.
|