[1] Wan Y X, Li J G, Liu Y, et al. Overview of the present progress and activities on the CFETR [J]. Nucl. Fusion, 2017, 57(10): 102009.
[2] Xu G L, Zhou Y F, Mao S F. The influence of divertor plasma parameter on tungsten screening in high recycling regime for CFETR [J]. IEEE Transactions on Plasma Science, 2018, 46(5): 1382-1386.
[3] Shi N, Chan V S, Jian X, et al. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling [J]. Nucl. Fusion, 2017, 57(12): 126046.
[4] Schneider R, Bonnin X, Borrass K, et al. Plasma edge physics with B2-EIRENE [J]. Contrib. Plasma Phys. 2006, 46(1?2): 3-191.
[5] Chankin A V, Coster D P, Dux R, et al. SOLPS modelling of ASDEX upgrade H-mode plasma [J]. Plasma Phys. Contr. Fusion, 2006, 48: 839–868.
[6] Maingi R, Boyle D P, Canik J M, et al. The effect of progressively increasing lithium coatings on plasma discharge characteristics, transport, edge profiles and ELM stability in the national spherical torus experiment [J]. Nucl. Fusion, 2012, 52(8): 083001.
[7] Kotov V, Reiter D, Pitts R A, et al. Numerical modelling of high density JET divertor plasma with the SOLPS 4.2 (B2-EIRENE) code [J]. Plasma Phys. Contr. Fusion, 2008, 50(10): 105012.
[8] Sang C F, Stangeby P C, Guo H Y, et al. SOLPS modeling of the effect on plasma detachment of closing the lower divertor in DIII-D [J]. Plasma Phys. Contr. Fusion, 2017, 59(2): 025009.
[9] Sang C F, Du H L, Zuo G Z, et al. SOLPS modeling of lithium transport in the scrape-off layer during real-time lithium injection on EAST [J]. Nucl. Fusion, 2016, 56(10): 106018.
[10] Sang C F, Wang Z H, Xu M, et al. Simulation of the gas puffing fueling on the HL-2A tokamak using SOLPS [J]. Plasma Phys. Contr. Fusion, 2018, 136: 1041-1046.
[11] Kukushkin A S, Pacher H D, Kotov V et al. Finalizing the ITER divertor design: The key role of SOLPS modeling [J]. Fusion Engineering and Design, 2011, 86: 2865–2873.
[12] Stangeby P C, Elder J D. Calculation of observable quantities using a divertor impurity interpretive code, DIVIMP [J]. J. Nucl. Mater. 1992, 196?198: 258-263.
[13] Bernert M, Wischmeier M, Huber A, et al. Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET [J]. Nuclear Materials and Energy, 2017, 12: 111- 118.
[14] Wischmeier M, The ASDEX Upgrade team and JET EFDA contributors. High density operation for reactor-relevant power exhaust [J]. J. Nucl. Mater., 2015, 463: 22-29.
[15] Snyder P B, Groebner R J, Leonard A W, et al. Development and validation of a predictive model for the pedestal height [J]. Phys. Plasmas, 2009, 16: 056118.
[16] Snyder P B, Groebner R J, Hughes J W, et al. A first-principles predictive model of the pedestal height and width: development, testing and ITER optimization with the EPED model [J]. Nucl. Fusion, 2011, 51(10): 103016.
[17] Kukushkin A S, Pacher H D, Pacher G W, et al. Scaling laws for edge plasma parameters in ITER from two-dimensional edge modelling [J]. Nucl. Fusion, 2003, 43, 716-723.
[18] 邓伯权. 聚变堆物理——新构思与新技术 [M]. 北京:中国原子能出版社, 2013.
[19] Chung T, Hutchinson I H, Lipschultz B, et al. DIVIMP modeling of impurity flows and screening in Alcator C-Mod [J]. J. Nucl. Mater., 2005, 463: 672-675.
[20] McCracken G M, Granetz R S, Lipschultz B, et al. Screening of recycling and non-recycling impurities in the Alcator C-Mod tokamak [J]. J. Nucl. Mater., 1997, 241?243: 777-781.
|