[1] Arnoux G, Bazylev B, Lehnen M, et al. Heat load measurements on the JET first wall during disruptions[J].J. Nucl. Mater. 2011, 415(1): S817- S820.
[2] Lehnen M, Arnoux G, Hartmann N, et al. Disruption heat loads and their mitigation in JET with the ITER-like wall[J]. J. Nucl. Mater., 2013, 438: S102-S107.
[3] Linke J, Akiba M, Bolt H. Performance of beryllium,carbon, and tungsten under intense thermal fluxes[J]. J.Nucl. Mater., 1997, 241: 1210-1216.
[4] Li M Y , Werner E, You J H. Low cycle fatigue behavior of ITER-like divertor target under DEMO-relevant operation conditions[J]. Fusion Engineering and Design,2015, 90: 88-96.
[5] Wirtz M, Linke J, Pintsuk G. Thermal shock behaviour of tungsten after high flux H-plasma loading[J]. J. Nucl.Mater., 2013, 443(1): 497-501.
[6] Zhaoxuan Sun, Qiang Li, Wanjing Wang, et al. Post examination of tungsten monoblocks subjected to high heat fluxtests of ITER full-tungsten divertor qualification program[J]. Fusion Engineering and Design,2017,121:60–69.
[7] You J H, Bolt H. Analytical method for thermal stress analysis of plasma facing materials[J]. J. Nucl. Mater.,2001, 299(1): 9-19.
[8] Dell'Orco G, Lorenzetto P, Malavasi A, et al. Thermalmechanical test on ITER primary first wall mock-ups[J].Fusion Engineering and Design, 2002, 61: 117-122.
[9] Aktaa J, Schmitt R. High temperature deformation and damage behavior of RAFM steels under low cycle fatigue loading: experiments and modeling[J]. Fusion Engineering and Design, 2006, 81(19): 2221-2231.
[10] Hibbitt, Karlsson, Sorensen, et al. Abaqus theory manual(v6.1)[S]. 2010.
[11] Davis J W, Smith P D. ITER material properties handbook[J]. J. Nucl. Mater., 1994, 233(Part2): 1593-1596.
[12] Crescenzi F, Moriani A, Roccella S, et al. Water-cooled divertor target design study CuCrZr/W monoblock concept [R]. EFDA Report: WP13-DAS02-T02-D02,2013.
[13] Hirai T, Ezato K, Majerus P. ITER relevant high heat flux testing on plasma facing surfaces[J]. Material Transaction, 2005, 46: 412–24. |