[1] 石秉仁. 磁约束聚变原理与实践 [M]. 北京: 原子能出版社, 1999.
[2] 杜世刚. 等离子体物理 [M]. 北京: 原子能出版社, 1998.
[3] F F Chen, 林光海译. 等离子体物理导论 [M]. 北京: 人民教育出版社, 1981.
[4] Morabito F C, Versaci M, Pautasso G, et al. Fuzzy-neural approaches to the prediction of disruptions in ASDEX Upgrade [J]. Nucl. Fusion, 2001, 41: 1715-1723.
[5] Yoshino R . Neural-net disruption predictor in JT-60U [J]. Nucl. Fusion, 2003, 43: 1771-1786.
[6] Yoshino R. Neural-net predictor for beta limit disruptions in JT-60U [J]. Nucl. Fusion, 2005, 45: 1232-1246.
[7] Pautasso G, Tichmann C, Egorov S, et al. On-line prediction and mitigation of disruptions in ASDEX Upgrade [J]. Nucl. Fusion 2002, 42: 100-108.
[8] Cannas B, Fanni A, Marongiu E, et al. Disruption forecasting at JET using neural networks [J]. Nucl. Fusion, 2004, 44: 68-76.
[9] Sengupta A, Ranjan P. Forecasting disruptions in the ADITYA tokama using neural networks [J]. Nucl. Fusion, 2000, 40: 1993-2008.
[10] Windsor C G, Pautasso1 G, Tichmann1 C, et al. A cross-tokamak neural network disruption predictor for the JET and ASDEX Upgrade tokamaks [J]. Nucl. Fusion, 2005, 45: 337-350.
[11] 许东, 吴铮. 基于MATLAB 6.x的系统分析与设计——神经网络 [M]. 西安: 西安电子科技大学出版社, 2003.
[12] 杨建刚. 人工神经网络适用教程 [M]. 杭州: 浙江大学出版社, 2001.
[13] Wang Hao, Wang Ai-Ke, Yang Qing-Wei, et al. HL-2A tokamak disruption forecasting based on an arti?cial neural network [J]. Chinese Physics, 2007, 16: 3738-3741.
[14] Yang Qing-wei, Zhou Hang-Yu, Feng Bei-Bin, et al. A new criterion for disruption prediction on HL-2A [J]. Chin. Phys. Lett., 2006, 23: 891-894. |