[1] Philipps V. Tungsten as material for plasma-facing components in fusion devices [J]. Journal of Nuclear Materials, 2011, 415(1): S2.
[2] Gunn J P, Carpentier-Chouchana S, Dejarnac R, et al. Ion orbit modelling of ELM heat loads on ITER divertor vertical targets [J]. Nuclear Materials and Energy, 2017, 12: 75.
[3] Pitts R A, Carpentier S, Escourbiac F, et al. A full tungsten divertor for ITER: Physics issues and design status [J]. Journal of Nuclear Materials, 2013, 438(1-3): S48.
[4] Arshad K, Ding D, Wang J, et al. Surface cracking of tungsten-vanadium alloys under transient heat loads [J]. Nuclear Materials and Energy, 2015, 3‒4(July): 32.
[5] Hirai T, Pintsuk G, Linke J, et al. Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures [J]. Journal of Nuclear Materials, 2009, 390(1): 751.
[6] Kim H S, Lim S T, Jin Y, et al. Recrystallization of bulk and plasma-coated tungsten with accumulated thermal energy relevant to Type-I ELM in ITER H-mode operation [J]. Journal of Nuclear Materials, 2015, 463(Aug.): 215.
[7] Zhitlukhin A, Klimov N, Landman I, et al. Effects of ELMs on ITER divertor armour materials [J]. Journal of Nuclear Materials, 2007, 365(1): 301.
[8] Khimchenko L N, Gureev V M, Federici G, et al. Study of erosion products in experiments simulating ELMs and disruptions in ITER on plasma gun QSPA-facility [A]. Proc. 21 Fusion Energy Conf [C]. Austria: IAEA, 2006. 226.
[9] Klimov N, Podkovyrov V, Zhitlukhin A, et al. Experimental study of PFCs erosion under ITER-like transient loads at plasma gun facility QSPA [J]. Journal of Nuclear Materials, 2009, 390(1): 721.
[10] Lian Y, Liu X, Cheng Z, et al. Thermal shock performance of CVD tungsten coating at elevated temperatures [J]. Journal of Nuclear Materials, 2014, 455(1): 371.
[11] Linke J, Escourbiac F, Mazul I V, et al. High heat flux testing of plasma facing materials and components-Status and perspectives for ITER related activities [J]. Journal of Nuclear Materials, 2007, 367-370(3): 1422.
[12] Yu J H, De T G, Doerner R P, et al. The effect of transient temporal pulse shape on surface temperature and tungsten damage [J]. Nuclear Fusion, 2015, 55(9): 093027.
[13] Shen J, Shahid I, Yu X, et al. Fracture analysis of surface exfoliation on single crystal silicon irradiated by intense pulsed ion beam [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017, 413(Dec.): 6.
[14] Wirtz M, Linke J, Loewenhoff T, et al. Transient heat load challenges for plasma-facing materials during long-term operation [J]. Nuclear Materials and Energy, 2017, 12: 148.
[15] Liu X, Lian Y, Chen L, et al. Tungsten joining with copper alloy and its high heat load performance [J]. Journal of Nuclear Materials, 2014, 455(1): 382.
[16] Qu M, Kong F, Yan S, et al. Damages on pure tungsten irradiated by compression plasma flows [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 444: 33.
[17] Qu M, Yan S, Lian Y, et al. Dependence of tungsten crack behaviors on heat source parameters under transient heat flow [J]. Materials Science and Engineering: A, 2023, 874(May): 145079.
[18] Dümmer T, Lasalvia J C, Ravichandran G, et al. Effect of strain rate on plastic flow and failure in polycrystalline tungsten [J]. Acta Materialia, 1998, 46(17): 6267.
[19] Lennon A M, Ramesh K T. The thermoviscoplastic response of polycrystalline tungsten in compression [J]. Materials Science & Engineering A, 2000, 276(1-2): 9.
[20] Koro G P, Bennett J R J, Edgecock T R, et al. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures [J]. Journal of Nuclear Materials, 2012, 426(1-3): 45.
[21] 李营, 吴卫国, 汪玉, 等. 基于修正CS模型的船用945钢冲击性能研究 [J]. 中国造船, 2014, 55(3): 94.
[22] Arakcheev A S, Skovorodin D I, Burdakov A V, et al. Calculation of cracking under pulsed heat loads in tungsten manufactured according to ITER specifications [J]. Journal of Nuclear Materials, 2015, 467(Part 1): 165.
[23] 李向宾, 李长君, 朱大焕, 等. 钨材料在瞬态高热流冲击下热结构响应过程模拟和分析 [J]. 核聚变与等离子体物理, 2017, 37(3): 308.
[24] 陈蕾, 刘翔, 练友运. 高纯钨在瞬态热冲击下的损伤行为研究 [J]. 核聚变与等离子体物理, 2014, 34(1): 53.
[25] I E 坎伯尔. 高温技术 [M]. 北京: 科学出版社, 1961. 254. |