[1] 徐玉平, 吕一鸣, 周海山, 等. 核聚变堆包层结构材料 研究进展及展望 [J]. 材料导报, 2018, 32(9): 2897-2906.
[2] BOCCACCINIL V, AIELLO G, AUBERT J, et al. Objectives and status of EUROfusion DEMO blanket studies [J]. Fusion Engineering and Design, 2016, 109-111(Part B): 1199-1206.
[3] UKAI S, NISHIDA T, OKUDA T, et al. R&D of oxide dispersion strengthened ferritic martensitic steels for FBR [J]. Journal of Nuclear Materials, 1998, 258-263(Part 2): 1745-1749.
[4] KIMT K, NOHS, KANGS H, et al. Current status and future prospective of advanced radiation resistant oxide dispersion strengthened steel (ARROS) development for nuclear reactor system applications [J]. Nuclear Engineering and Technology, 2016, 48(2): 572-594.
[5] ZINKLE S J, BOUTARD J L, HOELZER D T, et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications [J]. Nuclear Fusion, 2017, 57(9): 092005.
[6] CHEN J M, WANG X Y, WANG P H, et al. FW and blanket technology development progress at SWIP [J]. Journal of Fusion Energy, 2021, 40(1): 10-17.
[7] TANEIKE M, ABEF, SAWADA K. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions [J]. Nature, 2003, 424(6946): 294-296.
[8] VERHIEST K, ALMAZOUZI A, WISPELAERE N D, et al. Development of oxides dispersion strengthened steels for high temperature nuclear reactor applications [J]. Journal of Nuclear Materials, 2009, 385(2): 308-311.
[9] CAPDEVILA C, BHADESHIA H K D H. Manufacturing and microstructural evolution of mechanuically alloyed oxide dispersion strengthened superalloys [J]. Advanced Engineering Materials, 2001, 3(9): 647-656.
[10] BERGNER F, HILGER I, VIRTA J, et al. Alternative fabrication routes toward oxide-dispersion-strengthened steels and model alloys [J]. Metallurgical and Materials Transactions A, 2016, A47(11): 5313-5324.
[11] SHI Z M, HAN F S. The microstructure and mechanical properties of micro-scale Y2O3 strengthened 9Cr steel fabricated by vacuum casting [J]. Materials and Design, 2015, 66(Part A): 304-308.
[12] 张晓新, 洪志远, 宋刚, 等. 液态金属法制备ODS 钢的研究进展 [J]. 材料热处理学报, 2019, 40(11): 69-84.
[13] SHI Y N, LV Z, XU H J, et al. Microstructure characterization and mechanical properties of laser additive manufactured oxide dispersion strengthened Fe-9Cr alloy [J]. Journal of Alloys and Compounds, 2019, 791(June): 121-133.
[14] DONATE-BUENDIA C, KURNSTEINER P, STERN F, et al. Microstructure formation and mechanical properties of ODS steels built by Laser Additive Manufacturing of nanoparticle coated iron-chromium powders [J]. Acta Materialia, 2021, 206(Mar.): 116566.
[15] 赵剑峰, 马智勇, 谢德巧, 等. 金属增材制造技术 [J]. 南京航空航天大学学报, 2014, 46(5): 675-681.
[16] 孙晓峰, 宋巍, 梁静静, 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57(11): 1471-1483.
[17] LIAO H B, WANG X Y, YANG G P, et al. Recent progress of R&D activities on reduced activation ferritic/martensitic steel (CLF-1) [J]. Fusion Engineering and Design, 2019, 147(Oct.): 111235.
[18] 王文涛, 刘实, 李依依. 氧化物弥散强化低活化合金的微观组织及力学性能 [J]. 原子能科学技术, 2016, 50(3): 492-497.
[19] YANG SH, CHEN J M, FU H Y, et al. Mechanical properties and microstructure of 9Cr-ODS-CLF-1 steel [J]. Fusion Engineering and Design, 2020, 151(Feb): 111406.
[20] JIANG M G, CHEN Z W, TONG J D, et al. Strong and ductile reduced activation ferritic/martensitic steel additively manufactured by selective laser melting [J]. Materials Research Letters, 2019, 7(10): 426-432.
[21] LIU C Y, TONG J D, JIANG M G, et al. Effect of scanning strategy on microstructure and mechanical properties of selective laser melted reduced activation ferritic/martensitic steel [J]. Materials Science & Engineering A, 2019, 766(Oct.): 138364.
[22] 梁庆杰. 工艺参数对选区激光熔化成形316L 不锈钢的影响 [J]. 广西大学学报(自然科学版), 2018, 43(3): 1013-1019.
[23] 王迪, 杨永强, 何兴容, 等. 316L 不锈钢粉末光纤激光选区熔化特性 [J]. 强激光与粒子束, 2010, 22(8): 1881-1886.
[24] 马英怡, 刘玉德, 石文天, 等. 扫描速度对选区激光熔化316L 不锈钢粉末成形缺陷及性能的影响 [J]. 激光与光电子学进展, 2019, 56(10): 210-219.
[25] QIU C L, PANWISAWAS C, WARD M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting [J]. Acta Materialia, 2015, 96(Sep.): 72-79.
[26] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35(10): 2690-2698.
[27] 王志坚, 王宗园, 宋鸿武, 等. Ti-6Al-4V 激光快速成形熔池凝固过程研究 [J]. 机械设计与制造, 2017, 8: 103-105.
[28] FARSHIDIANFAR M H, KHAJEPOUR A, GERLICH A P. Effect of real-time cooling rate on microstructure in Laser Additive Manufacturing [J]. Journal of Materials Processing Technology, 2016, 231(May): 468-478.
[29] 刘健, 彭钦, 谢建新. 选区激光熔化René88DT 高温合金的晶粒组织及冶金缺陷调控 [J]. 金属学报, 2021, 57(2): 191-207.
[30] KLIMENKOV M, LINDAU R, MOSLANG A. New insights into the structure of ODS particles in the ODS-Eurofer alloy [J]. Journal of Nuclear Materials, 2009, 386-388(Apr.): 553-556.
[31] WILLIAMS C A, MARQUIS E A, CEREZO A, et al. Nanoscale characterisation of ODS-Eurofer 97 steel: An atom-probe tomography study [J]. Journal of Nuclear Materials, 2010, 400(1): 37-45.
[32] YANG G P, LIAO H B, WANG X Y, et al. Homogeneity evaluation on chemical composition, microstructure and mechanical properties of heavy-forged CLF-1 steel plate [J]. Fusion Engineering and Design, 2022, 178(May): 113092.
[33] 徐帅, 周张健, 贾皓东. 先进反应堆用ODS F/M 钢的强韧性匹配研究进展 [J]. 原子能科学技术, 2019, 53(10): 1885-1893.
[34] KIM J H, BYUN T S, HOELZER D T, et al. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part II-Mechanistic models and predictions [J]. Materials Science & Engineering: A, 2013, 559(Jan.): 111-118.
|