[1] 徐国盛. 托卡马克台基与高约束稳态运行模式 [R].合肥: 中国科学院等离子体物理研究所, 2017.
[2] Boyle D P, Maingi R, Snyder P B, et al. The relationships between edge localized modes suppression, pedestal profiles and lithium wall coatings in NSTX [J]. Plasma Phy. & Contr. Fusion, 2011, 53(10): 105011.
[3] Hu J S, Sun Z, Guo H Y, et al. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak [J]. Phys. Rev. Lett., 2015,114(5): 055001.
[4] Sabbagh S, Skinner C H. Effect of lithium PFC coatings on NSTX density control [J]. J. Nucl. Mater., 2007,363?365(1): 791-796.
[5] Allain J P, Brooks J N. Lithium surface-response modelling for the NSTX liquid lithium divertor [J]. Nucl.Fusion, 2011, 51(2): 023002.
[6] Kondo K, Ida K, Christou C, et al. Behavior of pellet injected Li into Heliotron E plasmas [J]. J. Nucl. Mater.,1997, 241?243(1): 956-960.
[7] 孙震. EAST 装置锂化壁处理系统设计及其关键技术研究 [D]. 合肥: 中国科学院等离子体物理研究所, 2012.
[8] Pool J W, Freeman M P. Simulator tests to study hot-flow problems related to a gas core reactor [R]. NASA CR-2309(1973).
[9] Xue S, Proulx P, Boulos M I. Extended-field electromagnetic model for inductively coupled plasma [J]. Journal of Physics D Applied Physics, 2001, 34(12):1897.
[10] Ikhlef N, Leroy O, Mekideche M R. Computational model of thermal-Fluid flow in a radio-frequency plasma torch [J]. Contributions to Plasma Physics, 2015, 54(8):735-745.
[11] Bahouh H, Rebiai S, Rochette D, et al. Modelling of an inductively coupled plasma torch with argon at atmospheric pressure [J]. Physica Scripta, 2014,2014(T161): 014008.
[12] 朱海龙. 射频热等离子体及其在粉末球化中的应用研究 [D]. 成都: 核工业西南物理研究院, 2014.
[13] 朱海龙, 童洪辉, 杨发展, 等. 感应耦合氩气热等离子体速度分布的数值分析 [J]. 核聚变与等离子体物理,2013, 33(2): 181-186.
[14] 陈伦江, 陈文波, 刘川东, 等. 感应耦合等离子体制备球形铬粉末的工艺研究 [J]. 核聚变与等离子体物理,2017, 37(2): 244-248. |