[1] Akli K U, Hansen S B, Kemp A J, et al. Laser heating of solid matter by light-pressure-driven shocks at ultra- relativistic intensities[J]. Phys. Rev. Lett., 2008, 100(16): 165002.
[2] Nilson P M, Theobald W, Myatt J F, et al. Bulk heating of solid-density plasmas during high-intensity-laser plasma interactions[J]. Phys. Rev. E, 2009, 79(1): 016406.
[3] Tabak M, Hammer J, Glisky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Phys. Plasmas, 1994, 1(5): 1626.
[4] Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Phys. Lett., 2000, 85(14): 2945.
[5] Maksimchuk A, Gu S, Flippo K, et al. Forward ion acceleration in thin films driven by a high-intensity laser[J]. Phys. Rev. Lett., 2000, 84(18): 4108-4111.
[6] Hatchett S P, Brown C G, Cowan T E, et al. Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets[J]. Phys. Plasmas, 2000, 7(5): 2076.
[7] Reich Ch, Uschmann I, Ewald F, et al. Spatial characteristics of Kα X-ray emission from relativistic femtosecond laser plasmas[J]. Phys. Rev. E, 2003, 68(5): 056408.
[8] Chen H, Wilks S C, Bonlie J D, et al. Relativistic positron creation using ultraintense short pulse lasers [J]. Phys. Rev. Lett., 2009, 102(10): 105001.
[9] Green J S, Ovchinnikov V M, Evans R G, et al. Phys. Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas[J]. Phys. Rev. Lett., 2008, 100(1): 015003.
[10] Scott R H H, Beaucourt C, Schlenvoigt H P, et al. Controlling fast electron beam divergence suing two laser pulses [J]. Phys. Plasmas, 2012, 12(6): 063106.
[11] Ovchinnikov V M, Schumacher D W, McMahon M, et al. Effects of preplasma scale length and laser intensity on the divergence of laser-generated hot electrons[J]. Phys. Rev. Lett., 2013, 110(6): 065007.
[12] Nakajima H, Tokita S, Inoue S, et al. Divergence-free transport of laser-produced fast electrons along a meter-long wire target [J]. Phys. Rev. Lett., 2013, 110(15): 155001.
[13] Akli K U, Storm M J, McMakon M, et al. Time dependence of fast electron beam divergence in ultraintense laser-plasma interactions[J]. Phys. Rev. E, 2012, 86(2): 026404.
[14] Vaziri Mohammad, Golshani Mojtaba, Sohaily Sozha, et al. Electron acceleration by linearly polarized twisted laser pulse with narrow divergence [J]. Phys. Plasmas, 2015, 22(3): 033118.
[15] Culfa O, Tallents G J, Rossall A K, et al. Plasma scale-length effects on electron energy spectra in high-irradiance laser plasmas[J]. Phys. Rev. E, 2016, 93 (4): 043201.
[16] Stephens R B, Snavely R A, Aglitskiy Y, et al. Kα fluorescence measurement of relativistic electron transport in the context of fast ignition[J]. Phys. Rev. E, 2004, 69(6): 066414.
[17] Storm M, Solodov A A, Myatt J F, et al. High-current, relativistic electron-beam transport in metals and the role of magnetic collimation[J]. Phys. Rev. Lett., 2009, 102(23): 235004.
[18] Lancaster K L, Green J S, Hey D S, et al. Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5×1020W?cm−2
[J]. Phys. Rev. Lett., 2007, 98(12): 125002.
[19] Popescu H, Baton S D, Amiranoff F, et al. Subfemto- second, coherent, relativistic, and ballistic electron bunches generated at ω0 and 2ω0 in high intensity laser-matter interaction
[J]. Phys. Plasmas, 2005, 12(6): 063106.
[20] Wharton K B, Hatchett S P, Wilks S C, et al. Experimental measurements of hot electrons generated by ultraintense (>1019W/cm2) laser-plasma interactions on
solid-density targets [J]. Phys. Rev. Lett., 1998, 81(4): 822.
[21] Bilski P, Budzanowski M, Olko P, et al. Properties of different thin-layer LiF: Mg, Cu, P TL detectors for beta dosimetry [J]. Radiat. Prot. Dosim, 1996, 66(1-4): 101.
[22] 蔡达锋, 谷渝秋, 郑志坚, 等. 用于电子能谱测量的LiF热释光探测器标定[J]. 强激光与粒子束. 2003, 15(2): 141.
[23] Forslund D W, Kindel J M, Lee Kenneth, et al. Theory and simulation of resonant absorption in a hot plasma [J]. Phys. Rev. A, 1975, 11(2): 679.
[24] Brunel F. Not-so-resonant, resonant absorption [J]. Phys. Rev. Lett., 1987, 59(3): 52.
[25] Brunel F. Anomalous absorption of high intensity subpicoscond laser pulses [J]. Phys. Fluids, 1988, 31(9): 2714.
[26] Malka G, Fuchs J, Amiranoff F, et al. Suprathermal electron generation and channel formation by an ultrarelativistic laser pulse in an underdense preformed plasma [J]. Phys. Rev. Lett., 1997, 79(11): 2053.
[27] Shi-Bing Liu, Jie Zhang, Wei yu. Acceleration and double-peak spectrum of hot electrons in relativistic laser plasmas [J]. Phys. Rev. E, 1999, 60(3): 3279.
[28] Dong Q L, Zhang J. Electron acceleration by static and oscillating electric fields produced in the interaction between femtosecond laser pulses and solid targets [J]. Phys. Plasmas, 2001, 8(3): 1025.
[29] 张兴宝. 1~50MeV电子束辐射剂量学[M]. 北京:原子能出版社, 1994. 27.
[30] Pérez F, Kemp A J, Divol L, et al. Deflection of MeV electrons by self-generated magnetic fields in intense laser-solid interactions [J]. Phys. Rev. Lett., 2013, 111(24): 245001.
[31] Wilks S C, Langdon A B, Cowan T E, et al. Energetic proton generation in ultra-intense laser-solid interactions [J]. Phys. Plasmas, 2001, 8(2): 542.
[32] 蔡达锋, 谷渝秋, 郑志坚, 等. 飞秒激光-金属薄膜靶相互作用中靶前后超热电子能谱的比较[J]. 物理学报, 2007, 56(01): 346. |