[1] Cheng C Z, Chen L, Chance M S. High-n ideal and resistive shear Alfvén waves in tokamak[J]. Ann. Phys. (N.Y), 1985, 161: 21.
[2] Kimura H. Alfvén eigenmode and energetic particle research in JT-60U[J]. Nucl. Fusion, 1998, 38: 1303.
[3] Chen L. Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks[J]. Phys. Plasmas, 1994, 1: 1519.
[4] Hu S, Chen L. Discrete Alfvén eigenmodes in high-β toroidal plasmas[J]. Phys. Plasmas, 2004, 11: 1.
[5] E J. Strait for the DⅢ-D Team. DⅢ-D research in support of ITER[J]. Nucl. Fusion, 2009, 49:104008.
[6] Van Zeeland M A. Measurements, modelling and electron cyclotron heating modification of Alfvén eigenmode activity in DⅢ-D[J]. Nucl. Fusion, 2009, 49: 065003.
[7] Van Zeeland M A. Internal Alfvén eigenmode observa- tions on DⅢ-D[J]. Nucl. Fusion, 2006, 46: S880 –S887.
[8] Kramer G J, Nazikian R. Interpretation of core localized Alfvén eigenmodes in DⅢ-D and Joint European Torusreversed magnetic shear plasmas[J]. Phys. Plasmas, 2006, 13: 056104.
[9] Lee Y C, Van Dam J W. In Proceedings of the finite beta theory workshop[M]. Varenna, edited by B. Coppi and W. Sadowski, U.S DOECONF-7709167, 1997: P.93.
[10] Connor J W, Hastie R J, Taylor J B. High mode number stability of an axisymmetric toroidal plasma[J]. Proc. R. Soc. London, Ser. A, 1979, 365: 1.
[11] Connor J W, Hastie R J, Taylor J B. Shear, periodicity, and plasma ballooning modes[J]. Phys. Rev. Lett., 1978, 40: 396.
[12] Chen L, Zonca F. Theory of shear Alfvén waves in toroidal plasmas[J]. Phys. Scr., 1995, T60: 81.
[13] Hu S, Chen L. Discrete Alfvén eigenmodes excited by energetic particles in high-β toroidal plasmas[J]. Plasma Phys. Contr. Fusion, 2005, 47: 1253.
[14] Rice B W. Demonstration of high-performance negative central magnetic shear discharges in the DⅢ-D tokamak[J]. Phys. Plasmas, 1996, 3 (5):1983–1991.
[15] Allen S L, DⅢ-D Team. Overview of recent experi- mental results from the DⅢ-D advanced tokamak pro- gramme[J]. Nucl. Fusion, 2001, 41(10):1341–1353.
[16] Greenfield C M. Understanding and control of transport in Advanced Tokamak regimes in DⅢ-D[J]. Phys. Plasmas, 2000, 7(5):1959–1967.
[17] Koide Y. Comparison of internal transport barriers in JT-60U and DⅢ-D NCS discharges[J]. Plasma Phys. Contr. Fusion, 1998, 40: 97–110.
[18] Turnbull A D, Chu M S, Taylor T S, et al. Optimization of negative central shear discharges in shaped cross sections[A]. Proceedings 16th int. conference on plasma physics and controlled nuclear fusion research, Montreal, Canada, October 7–11, 1996[C]. International Atomic Energy Agency, Vienna, 1997.
[19] Rice B W, Taylor T S, Burrell K H, et al. The formation and evolution of negative central magnetic shear current profiles on DⅢ-D[J]. Plasma Phys. Contr. Fusion, 1996, 38: 869.
[20] Politzer P A. Stationary, high bootstrap fraction plasmas in DⅢ-D without inductive current control[J]. Nucl. Fusion, 2005, 45: 417–424.
[21] Jackson G L. Regime of very high confinement in the boronized DⅢ-D tokamak[J]. Phys. Rev. Lett., 1991, 67: 3098–3101.
[22] Taylor T S. Optimized profiles for improved confinement and stability In the DⅢ-D tokamak[J]. Plasma Phys. Contr. Fusion, 1994, 36: B229–B239. |