欢迎访问《核聚变与等离子体物理》官方网站,今天是 分享到:

核工业西南物理研究院 ›› 2023, Vol. 43 ›› Issue (4): 386-391.DOI: 10.16568/j.0254-6086.202304003

• 核聚变工程 • 上一篇    下一篇

CFETR 超临界 CO2锂铅双冷包层第一壁热工水力学分析

余 毅 1, 2,马学斌*1,蒋科成 1 ,伍秋染 1, 2,陈 磊 1 ,刘松林 1    

  1. (1. 中国科学院合肥物质科学研究院等离子体物理研究所,合肥 230031;2. 中国科学技术大学,合肥 230026) 
  • 收稿日期:2021-09-22 修回日期:2023-05-30 出版日期:2023-12-15 发布日期:2023-12-06
  • 作者简介:余毅(1997−),男,安徽安庆人,硕士,从事聚变堆包层结构设计与分析研究。
  • 基金资助:
    聚变堆主机关键系统综合研究设施(CRAFT)项目(2018-000052-73-01-001228)

Thermal-hydraulic analysis of the first wall of the supercritical CO2 cooled lithium lead blanket for CFETR 

YU Yi1, 2, MA Xue-bin1 , JIANG Ke-cheng1 , WU Qiu-ran1, 2, CHEN Lei1 , LIU Song-lin1   

  1. (1. Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031; 2. University of Science and Technology of China, Hefei 230026) 
  • Received:2021-09-22 Revised:2023-05-30 Online:2023-12-15 Published:2023-12-06

摘要: 基于 CFETR 超临界 CO2锂铅双冷包层基本结构,对超临界二氧化碳冷却第一壁方案进行了热工水力学分析。采用计算流体力学(CFD)的方法,通过限定第一壁最高温度,分析了流道间距、壁面粗糙度、流道尺寸和内壁面热流密度对驱动功率、出口温度和内壁面温度的影响,并与氦冷方案进行了比较,为后续包层结构设计提供参考。结果表明,减小流道间距、增大壁面粗糙度可以获得更好的冷却性能。增大流道极向尺寸可以有效降低驱动功率,而增大流道径向尺寸可以有效降低内壁面温度。考虑第一壁与增殖区换热后,内壁面最高温度会有较大提升。此外,超临界二氧化碳冷却第一壁所需的驱动功率小于氦气的驱动功率。

关键词: 包层;第一壁;超临界二氧化碳;计算流体力学 

Abstract: Based on the design of the supercritical CO2 cooled lithium lead blanket for CFETR, the thermal-hydraulic analysis of the first wall cooled by supercritical CO2 was carried out. In order to provide guidance for subsequent structural design, the effects of channel pitch, wall roughness, channel size and inner wall heat flux on evaluation parameters, including driving power, outlet temperature and inner wall temperature, were analyzed by limiting the maximum temperature of the first wall. Moreover, the cooling capacity was compared with helium. All studies were performed using computational fluid dynamics (CFD) approach. Results indicated that better cooling performance can be obtained by reducing the channel pitch and increasing the wall roughness. At the same time, increasing the polar and radial dimensions of the flow channel can effectively reduce the driving power and the inner wall temperature, respectively. Considering the heat exchange between the first wall and the breeding zone, the maximum temperature of the inner wall would increase greatly. In addition, the driving power required for supercritical CO2 to cool the first wall was less than that of helium. 

Key words: Blanket, First Wall, Supercritical CO2, CFD 

中图分类号: